<table>
<thead>
<tr>
<th>Page</th>
<th>Authors</th>
<th>Title</th>
<th>DOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>8563</td>
<td>Nadine Unger</td>
<td>On the role of plant volatiles in anthropogenic global climate change (doi 10.1002/2014GL061616)</td>
<td></td>
</tr>
<tr>
<td>8570</td>
<td>Lu Dong, Tianjun Zhou, and Xiaolong Chen</td>
<td>Changes of Pacific decadal variability in the twentieth century driven by internal variability, greenhouse gases, and aerosols (doi 10.1002/2014GL062269)</td>
<td></td>
</tr>
<tr>
<td>8586</td>
<td>Steven A. Cummer, Michael S. Briggs, Joseph R. Dwyer, Shaolin Xiong, Valerie Connaughton, Gerald J. Fishman, Gaopeng Lu, Fanchao Lyu, and Rahulkumar Solanki</td>
<td>The source altitude, electric current, and intrinsic brightness of terrestrial gamma ray flashes (doi 10.1002/2014GL062196)</td>
<td></td>
</tr>
<tr>
<td>8594</td>
<td>Muxingzi Li, Tim Woollings, Kevin Hodges, and Giacomo Masato</td>
<td>Extratropical cyclones in a warmer, moister climate: A recent Atlantic analogue (doi 10.1002/2014GL062186)</td>
<td></td>
</tr>
<tr>
<td>8611</td>
<td>Hirohiko Masunaga</td>
<td>Free-tropospheric moisture convergence and tropical convective regimes (doi 10.1002/2014GL062301)</td>
<td></td>
</tr>
<tr>
<td>8627</td>
<td>Jan S. Fuglestvedt, Bjørn H. Samset, and Keith P. Shine</td>
<td>Counteracting the climate effects of volcanic eruptions using short-lived greenhouse gases (doi 10.1002/2014GL061886)</td>
<td></td>
</tr>
<tr>
<td>8636</td>
<td>Yu Nie, Yang Zhang, Gang Chen, Xiu-Qun Yang, and D. Alex Burrows</td>
<td>Quantifying barotropic and baroclinic eddy feedbacks in the persistence of the Southern Annular Mode (doi 10.1002/2014GL062210)</td>
<td></td>
</tr>
<tr>
<td>8652</td>
<td>Kimberly E. Samuels-Crow, Joseph Gallevsky, Zachary D. Sharp, and Kate J. Dennis</td>
<td>Deuterium excess in subtropical free troposphere water vapor: Continuous measurements from the Chajnantor Plateau, northern Chile (doi 10.1002/2014GL062302)</td>
<td></td>
</tr>
<tr>
<td>8660</td>
<td>Tsubasa Kohyama and John M. Wallace</td>
<td>Lunar gravitational atmospheric tide, surface to 50 km in a global, gridded data set (doi 10.1002/2014GL060818)</td>
<td></td>
</tr>
<tr>
<td>8666</td>
<td>Andrew J. Heymsfield, Ian M. Giammanco, and Robert Wright</td>
<td>Terminal velocities and kinetic energies of natural hailstones (doi 10.1002/2014GL062324)</td>
<td></td>
</tr>
</tbody>
</table>

Cover. A day of an extremely long Kelvin-Helmholtz billow train. Four consecutive quarter-day panels of high-resolution temperature observations showing Antarctic Bottom Water mixing with overlying waters at the entrance of equatorial Romanche Fracture Zone. (Conservative temperature range [0.39 1.19] °C, blue-red). See van Haren et al. [pp. 8445-8451; doi: 10.1002/2014GL062421].
Extremely long Kelvin-Helmholtz billow trains in the Romanche Fracture Zone

Hans van Haren¹, Louis Gostiaux², Eugene Morozov³, and Roman Tarakanov³

¹NIOZ Royal Netherlands Institute for Sea Research, Den Burg, Netherlands, ²Laboratoire de Mécanique des Fluides et d’Acoustique, Ecole Centrale de Lyon, Université de Lyon, Écully, France, ³Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia

Abstract In the Atlantic Ocean, the densest water mass Antarctic Bottom Water “AABW” can only cross the Mid-Atlantic Ridge from its southwestern to northeastern basins in limited, because deep, conduits. At the southwestern entrance of one of these, the equatorial Romanche Fracture Zone, AABW causes shear-induced turbulent mixing with the overlying water masses. We present an excerpt of 1 Hz sampled, half-yearlong moored observations from 99 high-resolution temperature sensors that demonstrate and quantify the turbulence details. On top of quasi-steady shear flow, an internal tide modulates the mixing. Together, they constitute a means for an extremely long train of >250 consecutive Kelvin-Helmholtz billows in a day that vary between 5 and 100 m in vertical scale.

1. Introduction

The Romanche Fracture Zone (RFZ) is one of three main pathways for Antarctic Bottom Water (AABW) propagation from the western to the eastern Atlantic [Morozov et al., 2010]. Just before AABW enters the RFZ at 22°30′W its conservative temperature is about θ = 0.5°C; it is 0.65°C within the fracture at 22°10′W (2011 data) [Tarakanov et al., 2013]. After the exit from the RFZ to the Sierra Leone Basin at 13°W it is 1.66°C [Mantyla and Reid, 1983]. The considerable warming of AABW during the passage through the RFZ is attributed to strong mixing with overlying Atlantic waters (θ > 1.9°C) [Mercier and Morni, 1997]. This mixing has previously been found over the sills near the RFZ exit [Polzin et al., 1996; Ferron et al., 1998; Mercier and Speer, 1998]. Recently, equally strong mixing, with mean eddy diffusivity values of Kz = O(10⁻²)m²s⁻¹, was reported near the southwestern entrance of RFZ [Tarakanov et al., 2013].

The precise knowledge of mixing near the RFZ entrance is important for correctly modeling its efficiency further along in the RFZ, as (initial) mixing modifies the stratification. It is also important for a better understanding of the role of narrow conduits in global ocean water mass transport models. The above mixing estimates have been based on shipborne profiler measurements. Such measurements do not explicitly reveal the mechanism of the mixing process itself. This process will be shown in the present paper using high-resolution moored observations.

The flow over the sill of the southwestern entrance creates a vertical current shear that is strongest around 200 m above the bottom (hereafter mab). In combination with the channel-like topography, the descending flow can thus provide an ideal environment for shear-induced turbulence generation of the Kelvin-Helmholtz billow “KHb” type. In laboratory experiments, under constant shear, a quasi-infinite train of KHb may be observed, limited only by the size of the apparatus [e.g., Thorpe, 1968]; see also numerical modeling results by Scinocca and Ford [2000]. In nature, observations of such long trains of KHb are rare [Bacmeister and Schoeberl, 1989; Thorpe, 2005; Smyth and Moum, 2012]. This may be because shear flows rarely persist over long enough spatial and temporal scales [e.g., Wesson and Gregg, 1994; Farmer and Armi, 1999].

Here we report the observation of an extremely long KHb train (containing >250 billows or overturns) and quantify various mixing processes of AABW with overlying North Atlantic waters.

2. Data and Methods

Between October 2013 and April 2014, a 350 m long deep-sea mooring was deployed in 4720 m water depth at 01°05.034′ S, 022°27.652′ W (Figure 1). The immediate surrounding topography has a depth of 3500–4000 m, so that the mooring reached to approximately halfway up in the 7 km wide meridional channel connecting RFZ and the fracture to the south.
The mooring had 200 kg net buoyancy. It held upright two Nortek AquaDopp acoustic current meters at 4414 and 4612 m and between those a 198 m long 0.007 m diameter nylon-coated steel cable to which every 2 m a NIOZ4 high-resolution temperature sensor was taped. Of the total of 99 sensors, 10 showed battery, electronics, or calibration problems. Their data were interpolated between those of the neighboring sensors. The current meters sampled at a rate of once per 600 s, the temperature sensors at 1 Hz with a time delay of ≤ 0.02 s as they were synchronized inductively every 4 h [van Haren et al., 2009].

The low noise level of 6×10^{-5}°C permits to use these moored temperature observations to estimate stratified turbulence parameters like dissipation rate ε and K_z [van Haren and Gostiaux, 2012]. Thereby, the sorting method of unstable portions of a vertical density profile into a monotonic stable profile and, for these highly turbulent waters, a constant mixing efficiency of 0.2 is used [Thorpe, 1977; Osborn, 1980; Dillon, 1982]. The latter is a mean value for shear-induced turbulence in high Reynolds number flows, with variations over 1 order of magnitude [e.g., Wesson and Gregg, 1994; Mashayek et al., 2013]. The contribution from salinity besides temperature to local density variations is established from repeated shipborne SeaBird 19+
Conductivity-Temperature-Depth "CTD" profiles next to the mooring. Thus, the pressure-corrected conservative temperature [McDougall et al., 2009] is related to density-anomaly variations referenced to 4000 m:

\[\delta \sigma_{4000} = \alpha \delta \Theta, \]

in which \(\alpha = -0.091 \pm 0.001 \text{ kg m}^{-3}\text{C}^{-1} \) denotes the apparent expansion coefficient. Turbulence parameter estimates are made over the entire 196 m vertical range of temperature sensors for every 1 Hz profile. Averaging over time is denoted by \([\ldots]\) and averaging over depth by \(< \ldots > \).

Besides CTD, lowered 300 kHz, 16 m binned TeleDyne/RDI-Acoustic Doppler Current Profiler "LADCP" profiles were obtained during mooring deployment and recovery cruises.

3. Observations

Vertical CTD/LADCP profiles demonstrate a 0.3–0.4 m s\(^{-1}\) northward flow between about 30 and 230 mab, the dense AABW plunges into the fracture (Figures 2a and 2c). The level of shear stability, as indicated by the gradient Richardson number

\[Ri = \frac{N^2}{|S|^2} \]

where \(N \) denotes the buoyancy frequency of stable stratification and \(S = \left[\frac{dU}{dz}, \frac{dV}{dz} \right] \) the destabilizing shear vector for horizontal current components \(U \) (east-west) and \(V \) (north-south), is close to 0.25 (Figure 2b). This implies marginal linear stability [Miles, 1961; Howard, 1961]. This value varies with the internal tide, as is inferred from the moored observations. The negative \(Ri \) values in the original 16 m scale data reflect inversions due to overturns of the stable density profile (Figure 2c). Such inversions disappear when averaging with time is longer than the buoyancy period or when vertical smoothing is exceeding the largest overturn scale, > 100 m here. The resulting marginal (in)stability has similar low \(Ri \) values as found in inertial shear with steady magnitude [van Haren et al., 1999] and in the equatorial undercurrent [Smyth and Moum, 2013].

We deliberately focus on a 4 day long portion (Figure 3) that is characteristic for the entire half-year long observational record. Over the entire vertical range and during the entire data set, a typical cold temperature of AABW, the 0.85°C isotherm, color green-yellow here, is well-captured by the string of thermistors while it varies with the semidiurnal tide mainly over a range of up to 100 m (Figure 3a). Superposed on these are shorter-term variations. The 0.85°C isotherm is part of a rather sharp transition in density between the relatively warmer upper and cooler lower waters. Temperatures in both the lower (\(\Theta = 0.5–0.7°C \)) and upper
θ = 1.0–1.2°C) layers vary in time. These variations in temperature within a particular layer imply active mixing between the waters above and below, followed by a rapid transport by the larger-scale currents.

Values of ε and K_z, averaged over the entire vertical range of temperature sensors, vary over 3–4 orders of magnitude (Figure 3b), with tidal variability peaking when the warm-overlying waters are deepest and the current speeds generally weakest (Figures 3c and 3d). The current, strongest near the bottom of the range, is predominantly directed northward, with a tidal modulation. Averages over the 4 day period of $\langle \varepsilon \rangle = 2.4 \pm 1 \times 10^{-8} \text{ m}^2 \text{s}^{-3}$ and $\langle K_z \rangle = 4 \pm 2 \times 10^{-3} \text{ m}^2 \text{s}^{-1}$ are half an order of magnitude lower than the estimates based on CTD/LADCP observations in the same area in 2011 [Tarakanov et al., 2013]. The presently observed values are more than 1 order of magnitude larger than the canonical value [Munk and Wunsch, 1998] needed to maintain the ocean stratified over its entire depth and about 2 orders of magnitude larger than open ocean values [Gregg, 1989; Polzin et al., 1996]. These values are observed in relatively strong stratification of $\langle N \rangle = 1.0 \pm 0.5 \times 10^{-3} \text{ s}^{-1}$, given the large depth, and which allows a mean small-scale internal wave period of down to $2\pi/\langle N \rangle = 6000 \text{ s}$ (0.07 days). The 200 m shear magnitude $|S_{200}|$ computed as finite difference between current meter data shows a larger variation with time than $\langle N \rangle$, with an in-phase tidal modulation (Figure 3e). It provides a large-scale $Ri = \langle N \rangle^2/S_{200}$ (Figure 3f), regularly between 0.25 and 1, that is marginally stable confirming CTD/LADCP data, when $\langle \varepsilon \rangle$ and $\langle K_z \rangle$ are (tidally) peaking.

High-frequency internal waves of periods of 0.07 days and longer are observed in the detail of temperature and stratification (Figure 4). (Turbulence parameter averages over this 1 day period.)
Figure 4. One day detail in four consecutive parts showing shear-induced overturning. (a, c, e, and g) Conservative temperature, with the same color scheme as in Figure 3a and contours every 0.1°C in black. (b, d, f, and h) Buoyancy frequency computed from the data in Figure 4a, sorted per time step in a statically stable profile. The color range [blue, red] is on a log-scale for \([10^{-4}, 4 \times 10^{-3}] \text{s}^{-1}\).
are \(\langle c_\theta \rangle = 4 \pm 2 \times 10^{-8} \text{m}^2 \text{s}^{-3} \), \(\langle K_\theta \rangle = 6 \pm 3 \times 10^{-3} \text{m}^2 \text{s}^{-1} \).) However, much more rapid motions catch the eye, especially also as particular characteristic \(s \) or \(e \) shapes [Geyer and Smith, 1987; Geyer et al., 2010; Fukao et al., 2011] of thin-layer (orange-red) stratification. All the rapid variations are thus not freely propagating internal waves, but most likely turbulence, in particular \(\text{KHb} \), with overturns advected in part by the horizontal currents passing the mooring site.

In this particularly rich sample of overturns, we counted an uninterrupted sequence of 275 \pm 25 \text{KHb}. These \(\text{KHb} \) vary from an extensive train of 5–10 m small ones, passing between days 336.2 and 336.45 when large-scale \(\text{RI} \approx 1 \) (Figure 3f), to a sequence of up to 100 m overturns, between days 336.61 and 336.78 when large-scale \(\text{RI} \approx 0.3 \). The large change in amplitude and length of billows from one tidal cycle to the next suggests an increase in the thickness of the transitional layer due to a change in the internal tide/large-scale current interaction or to another, unknown process occurring upstream. The sensor separation of 2 m also resolves smaller-scale secondary \(\text{KHb} \) superposed on the rims of the latter [Corcos and Sherman, 1976], best viewed in the stratification data. The \(\text{KHb} \) activity is thus intense that the braid transition between individual overturns is relatively small to the stage of near merging. Yet merging is not occurring and the saturated billows remain stable, creating a long train of billows.

4. Conclusions

The uninterrupted train of \(\text{KHb} \) shown in Figure 4 is, to our knowledge, the longest observed in either the ocean or the atmosphere. Long \(\text{KHb} \) trains point at a rather persistent low stability of the stratified environment. Such marginal stability in terms of \(\text{RI} \) across an intense “thin-layer” stratification can only be achieved by a strong shear persistent in time. In the present case, the channel shape of the southwestern RFZ entrance sets up a continual flow of \(\sim 0.5 \text{m s}^{-1} \) in the lower 100–200 mab. This flow creates the background shear necessary to maintain small-scale overturning stability even if the tidal current is in the opposing direction. During the phase when the tidal current is directed opposite to the steady northward flow, the shear is largest and the 100 m large overturns are observed. The long train of 5–10 m small \(\text{KHb} \) is found under moderate shear, during the phase when the tidal current is with the steady flow. No other flows contribute sufficiently to maintain the stratification marginally stable. Thus, long \(\text{KHb} \) trains are observed, instead of the commonly 3–10 \(\text{KHb} \) trains that are much like the sequence of the 100 m large ones here. This train of large consecutive \(\text{KHb} \) is observed to contain small-scale, secondary \(\text{KHb} \) in the braids along the thin interfaces around and between them, e.g., day 336.15 around 4450 m, except for a weaker stratified “gap” on one side of the \(\text{KHb} \), e.g., day 336.7 around 4480 m. This also occurs in high Reynolds number estuarine flows, following detailed acoustic observations [Geyer et al., 2010] that reflect the stratification images here.

The implication is highly effective mixing along the thin-layer stratified border of the large overturns [Corcos and Sherman, 1976], with an opening to actively turbulent large overturning on the opposing side. Although the present observations were made at large depths \(>4000 \text{m} \), their environment is nearly as turbulent as an estuarine environment, with mean eddy diffusivity values \(\text{O}(10^{-3}) \text{m}^2 \text{s}^{-1} \) and turbulence dissipation rates \(\text{O}(10^{-8}) \text{m}^2 \text{s}^{-3} \). The strong turbulence conditions are manifest in the braids bordering large-scale billows. These are only observed in very active shear and high Reynolds number conditions. It appears that this turbulent mixing mechanism is the main cause for the rapid warming of AABW during its passage over sills through the RFZ, with an important role for the sill in the southwestern entrance studied here.

References

