
RESEARCH ARTICLE
10.1002/2014JC010132

Comparison of Ellison and Thorpe scales from Eulerian ocean
temperature observations
Andrea A. Cimatoribus1, Hans van Haren1, and Louis Gostiaux2

1Royal Netherlands Institute for Sea Research, Texel, Netherlands, 2Laboratoire de M�ecanique des Fluides et d’Acoustique,
CNRS/Universit�e de Lyon, Lyon, France

Abstract Ocean turbulence dissipation rate is estimated either by means of microstructure shear measure-
ments, or by adiabatically reordering vertical profiles of density. The latter technique leads to the estimate of the
Thorpe scale, which in turn can be used to obtain average turbulence dissipation rate by comparing the Thorpe
scale to the Ozmidov scale. In both cases, the turbulence dissipation rate can be estimated using single vertical
profiles from shipborne instrumentation. We present here an alternative method to estimate the length scale of
overturns by using the Ellison length scale. The Ellison scale is estimated from temperature variance just beyond
the internal wave band, measured by moored instruments. We apply the method to high resolution temperature
data from two moorings deployed at different locations around the Josephine seamount (North Eastern Atlantic
Ocean), in a region of bottom-intensified turbulence. The variance of the temperature time series just above the
internal wave frequency band is well correlated with the Thorpe scale. The method is based on the time-
frequency decomposition of variance called ‘‘maximum overlap discrete wavelet transform.’’ The results show
that the Ellison length scale can be a viable alternative to the Thorpe scale for indirectly estimating turbulence
dissipation rate from moored instruments in the ocean if time resolution is sufficiently high. We suggest that fine
structure contaminated temperature measurements can provide reliable information on turbulence intensity.

1. Introduction

Turbulence dissipation rate is a key quantity in a turbulent flow. It is defined as �5 1
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, where m is

the kinematic viscosity, ui is the component of the velocity fluctuation along the xi direction and summation
over repeated indices is assumed [see e.g., Frisch, 1996]. The interest in the value of the turbulence dissipa-
tion rate is linked to two fundamental open questions on the world ocean circulation. On one hand, its dis-
tribution is essential for better understanding how the kinetic energy budget of the world ocean is closed
[Ferrari and Wunsch, 2009]. On the other hand, � is often used for computing vertical diffusivity, a key quan-
tity controlling processes ranging from nutrient upwelling to the general circulation of the ocean. This sec-
ond aspect is further complicated by the lack of agreement on a value, or on a model, for mixing efficiency
[Ivey et al., 2008]. For this reason we will not consider vertical diffusivity in this work.

Direct estimation of � in the ocean interior requires the measurement of velocity shear at the millimeter
scale where most of the dissipation actually takes place (see for instance the shipborne microstructure
measurements of Oakey [1982]; Gregg [1987]; and Polzin et al. [1997]). Resolving the microstructure shear in
the deep ocean is not routine due to various reasons ranging from the cost of deep-ocean shear profilers to
the challenge represented by the interpretation of the raw data due to, e.g., vibrations of the instrument
(for a review on the instrumentation, see Lueck et al. [2002]).

Measurements of shipborne CTD (conductivity, temperature, depth), or temperature and depth alone, are
more routinely performed. Consequently, an indirect approach is often followed enabling the estimation of
the average turbulence dissipation rate from the characteristic size of the overturns in a stratified water col-
umn [Thorpe, 1977; Dillon, 1982; Itsweire, 1984; Gregg, 1987; Gargett, 1989]. In particular, � scales with the
size of the largest overturns unaffected by stratification for a given turbulence level and stratification, the
Ozmidov scale LO5ð�=N3Þ

1
2, with N the buoyancy frequency. The Ozmidov scale is not measured directly,

but can be linked to an objective measure of the overturn’s size in the water column. A common choice is
the Thorpe scale (LT), defined as the root mean square (RMS) of the displacement needed to adiabatically
reorder a (CTD) profile containing density inversions due to overturns [Thorpe, 1977].
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Dillon [1982] estimated the ratio LO=LT to be approximately 0.8. This linear relationship has been confirmed
by several authors like Crawford [1986]; Itsweire et al. [1993]; Peters et al. [1995]; Ferron et al. [1998]; and
Stansfield et al. [2001], in both observations and laboratory experiments, even if the large uncertainty affect-
ing this quantity must be kept in mind (observational estimates of the ratio have errors larger than 0.3).
Yagi and Yasuda [2013], while reporting a value of the LO=LT ratio within the error bars of previous esti-
mates, suggest that the ratio may depend on the measurement location, and should thus be estimated
locally. Other works show that the ratio is not a constant with time [e.g., Smyth and Moum, 2000; Smyth
et al., 2001; Mater et al., 2013]. However, these latter studies consider the time evolution of the LO=LT ratio
during a single mixing event, while time and spatial averages have to be taken in the observations (for a dis-
cussion of the essential role of averaging for finding an approximately linear relation between LO and LT see
Peters et al. [1995]). Keeping in mind these uncertainties connected with the use of Thorpe scales, in this
work we will follow Dillon [1982], estimating turbulence dissipation rate by the formula:

�LT 50:64 L2
T N3; (1)

where the subscript of � is a reminder of the method used for the estimation. The buoyancy frequency N is
computed as the column average from the reordered density profile. If only temperature is measured, as
often done in practice and here too, a key requirement for applying (1) is that temperature is a good proxy
of density. In practice, this means that the temperature-density relationship should be well approximated
by a single functional form. A linear temperature-density relationship is a further simplification, in which
case density variations can be obtained by using thermal compressibility alone.

Both estimation methods of the turbulence dissipation rate, direct and indirect, are in most cases used on iso-
lated measurements, from either free-falling, free-raising or lowered instruments. It should be noted that the
variance of the vertical isopycnal strain has also been used as an alternative to microstructure shear measure-
ments, in particular to determine vertical diffusivity [see e.g., Garabato et al., 2004; Kunze et al., 2006].

Here we employ an alternative method to estimate LO and LT, and thus the turbulence dissipation rate,
using temperature variance at fixed depth, measured by moored instruments. The temperature variance is
used to compute the Ellison scale, which we then relate to the Thorpe scale. We define the Ellison scale as:

LE5
d�h
dz

� �21

h02
1=2

(2)

with h0 the potential temperature fluctuation around the (time) mean value �h. Throughout the work we will
generally omit to mention that we use potential temperature rather than in situ temperature (the difference
is however very small in our data). The overline in (2) is understood as time averaging, and will be discussed
more in detail in section 2.2.2.

We will show that the part of the temperature variance at frequencies immediately beyond the internal wave
band is the one correlated with the turbulence dissipation rate. This part of the spectrum is in fact the one
most affected by fine structure contamination, i.e., spectral contamination due to the advection of sharp gra-
dients [Phillips, 1971; Gostiaux and van Haren, 2012]. Comparisons between the Thorpe scale and the Ellison
scale from laboratory experiments and numerical simulations are available in the literature, to our knowledge
at least in Itsweire [1984], Gargett [1988], Itsweire et al. [1993], Smyth and Moum [2000], and Mater et al. [2013].
Moum [1996] compared Thorpe and Ellison scales using microstructure profiles from the ocean thermocline.
As here, they found good correlation between Thorpe and Ellison scales, but it should be noted that a differ-
ent definition of the Ellison scale is used therein, based on fluctuations along the vertical direction rather than
time fluctuations. Possibly for this reason, they did not need to consider the distinction between internal
waves and turbulent motions. Our aim here is to analyze in detail the covariance of these two quantities in an
oceanographic context, focusing in particular on the role of time scales and on the potential for estimating
turbulence dissipation rate. From a practical perspective, the use of the Ellison scale can provide the advant-
age of being computed from local quantities, i.e., temperature variance at a fixed depth and local stratification.
We note, however, that the fact that N appears in equation (1) implies that the profile may have to be reor-
dered in order to compute N (depending on how N is computed), as we actually do here.

Fitting the classical Batchelor spectrum to temperature wave number spectra is a common approach for estimat-
ing temperature dissipation rate and turbulence dissipation rate [see e.g., Klymak and Moum, 2007, for an
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oceanographic application]. A connection
between the turbulence and the internal wave
spectra is plausible, as turbulence is believed
to be generated in the ocean by internal wave
breaking to a large extent. However, the actual
link between the two is still unclear, as testified
by the continuing efforts aimed at including
strongly nonlinear effects in a theory of inter-
acting waves [Nazarenko, 2011]. This work
may in fact be relevant also for this issue, even
if it is not the focus of this work.

Data sets obtained using NIOZ high sam-
pling rate thermistors [e.g., van Haren and

Gostiaux, 2012] provide with a unique opportunity to study the temporal variability of turbulence in the
ocean. These thermistors, deployed in a mooring, can measure temperature continuously and independ-
ently for up to 2 years, with a temporal resolution of 1 Hz and a vertical resolution set by the thermistor sep-
aration along the mooring line, usually about 1 m. A growing set of measurements has been collected in
various locations, ranging from tidally dominated shores [van Haren et al., 2012] to seamounts [van Haren
and Gostiaux, 2012], to the open and deep ocean [van Haren and Gostiaux, 2009, 2011]. In this paper, we
will consider two data sets, which combine high temporal resolution with a reliable estimation of the verti-
cal density profile.

The article is structured as follows: in section 2.1 we briefly describe the data sets used. In section 2.2, we
describe the data analysis procedure. Results are presented in section 3 and discussed in section 4. Sum-
mary of the main points and conclusions follow in section 5.

2. Methods

2.1. Data
The two data sets used in this work come from two different moorings, deployed from spring to early fall 2013
in the Atlantic Ocean on the slopes of Seamount Josephine (details of the moorings are given in Table 1). Each
of the moorings had more than 100 ‘‘NIOZ4’’ thermistors (an evolved version of the ones described in van Haren
et al. [2009]) taped on a nylon-coated steel cable, at intervals of 0.7 m (mooring 1) or 1.0 m (mooring 2). The
thermistors sampled temperature at a rate of 1 Hz with a precision higher than 1 mK. The moorings were
attached to a ballast weight at the bottom, and to an elliptical buoy at the top. The high tension on the string,
due to the high net buoyancy (approximately 400 kg), guarantees that the string effectively behaves as a rigid
rod, and that the mooring excursion both in the vertical and in the horizontal directions are small, as checked in
similar previous moorings [van Haren and Gostiaux, 2012]. All the thermistors in mooring 1 performed satisfacto-
rily for the whole deployment, with a noise level of approximately 5 � 1025�C. On the other hand, in mooring 2,
7 thermistors out of 140 provide no data due to battery or electronic failure. The data from the two different
moorings are processed following the same procedure. Calibration is applied to the raw data and the drift in
the response of the thermistor electronics, visible over periods longer than a few weeks, is compensated for.
Overall, signal-to-noise ratio (SNR) in mooring 2 is smaller than in mooring 1, mainly due to the smaller (approxi-
mately 10 times) temperature variations at the greater depth of these moorings. This limits the accuracy of our
Thorpe scale estimates from mooring 2, as well as the accurate estimation of temperature variance. We thus
focus our analyses on mooring 1, and consider mooring 2 only for the comparison and assessment of the skill
of the technique developed for mooring 1 in suboptimal conditions.

As mentioned in section 1, a key requirement for reliably estimating Thorpe scales and turbulence dissipa-
tion rate from temperature measurements is a tight density-temperature relationship. On top of this, a lin-
ear density-temperature relationship in the measured temperature range further ensures that temperature
is a good proxy of density. In order to check if these assumptions are valid for the data considered here,
two CTD surveys were performed. The first one was performed after the recovery of mooring 1, sampling
the water column approximately between 2000 m and 10 m above the bottom while the ship was moving
at less than 1 knot toward the deployment location of mooring 2. The results of this survey are summarized

Table 1. Details of Mooringsa

Mooring Number 1 2

Latitude 36
�
58:8850N 37

�
01:4310N

Longitude 13
�
45:5230W 13

�
39:4790W

Deepest thermistor 2210 m 2937 m
Height above bottom 5 m 5 m
Number of thermistors 144 140
Thermistor spacing 0.7 m 1.0 m
Length 100.1 m 139 m
Deployment 13 Apr 2013 12 Aug 2013
Recovery 12 Aug 2013 18 Oct 2013

aDetails of the two data sets from the two moorings used. The length
reported is the length over which thermistors are actually attached to
the cable.
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in Figures 1a and 1b, which show 2 m bin averages of potential temperature and potential density anomaly
respectively. Figure 1c shows instead potential density anomaly as a function of temperature for 2 m binned
data below 2000 m. The depth range is chosen in order to include approximately the same temperature
range as the one recorded at mooring 1, as well as measurements close to the bottom boundary layer
(3:524:5�C). The data come from the first six downward casts of the CTD, the ones closer to mooring 1.
Temperature from mooring 1 is higher by approximately 0:3�C during the last 20 days of the record than in
the rest of the data set. This suggests that warm water is being advected to the mooring location, possibly
due to the passage of a vortex or a front. As a consequence, this first CTD survey, performed during this
warm phase, sampled warmer water than the thermistor string average at the same depth. Furthermore,
while moving away from mooring 1, slightly different water masses were found in the higher temperature
range (close to 2000 m). This shows up in the bottom right part of Figure 1c. Despite this, density-
temperature relationship is well approximated by a linear fit of the data, shown in the figure, with a coeffi-
cient of determination R2 of 0.997. A quadratic fit provides only a marginal improvement of R2, and the coef-
ficient of the quadratic term is approximately 10 times smaller than that of the linear one.

To better assess the linearity of the density-temperature relation, a more extensive survey was performed
after the recovery of mooring 2. The survey included 8 casts of the column from 2500 m down to 10 m
above the bottom in a square region of side approximately 1 km centered at the mooring location. Nine
more casts over the whole water column were performed, along two perpendicular transects of length
approximately 20 km centered at the mooring location. The results of this second survey are collected in

Figure 1. Summary of the two CTD surveys performed. (a) The potential temperature profiles and (b) the potential density anomaly profiles of the
first survey. (d) The potential temperature profiles and (e) the potential density anomaly profiles of the second survey. In Figures 1a, 1b, 1d, and
1e the dashed red lines mark the top and bottom depths of mooring 1 (Figures 1a and 1b) and of mooring 2 (Figures 1d and 1e). The density-
temperature relation in the (c) first survey, for data below 2000 m and (f) below 2500 m for the second survey. Data in all plots are 2 m bin aver-
ages from downward CTD casts. The results of a linear fit of the data are shown in Figures 1c and 1f (see text). Note that the scales in the top and
bottom plots are different. Noise is more prominent in the density profiles (Figures 1b and 1e) than in temperature profiles (Figures 1a and 1d)
due to the combination of the conductivity and temperature measurements. Furthermore, Figures 1b and 1e have a horizontal range which is
smaller than Figures 1a and 1d respectively, even if the thermal expansion coefficient is taken into account.
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Figures 1d–1f. Figures 1d and 1e show 2 m bin averages of potential temperature and potential density
anomaly for the CTD casts of the second survey. Figure 1f shows potential density anomaly as a function of
temperature for 2 m binned data below 2500 m from all the downward CTD casts. The data, spanning a
broader temperature range than the one recorded at mooring 2, confirm the results of the first survey. A lin-
ear fit of the data gives an R2 of 0.998, and we conclude that temperature can be considered a reliable proxy
for density. Also in this case a quadratic fit does not give any substantial improvement over the linear one.
The larger spread of the data in Figure 1f is partly due to considering all the casts together, and partly an
artefact of the smaller temperature range plotted. If taken separately, each profile has a tight linear relation-
ship (not shown). The potential density anomaly profiles in both Figures 1b and 1e contain several over-
turns and layers (the latter in particular in Figure 1b), but the average stratification is approximately
constant.

2.2. Data Processing
2.2.1. Thorpe Scale Analysis
The full data from the moorings, at a 1 Hz sampling rate, are low-pass filtered and subsampled to a time
step of 25 s using nonoverlapping moving averages, for reasons of computational efficiency. The results are
not sensitive to this subsampling, as was discussed first in van Haren and Gostiaux [2012] and confirmed on
subsets of the data here. Missing data from mooring 2 (see section 2.1) are linearly interpolated using data
from the two thermistors directly above and below. In situ temperature is transformed to potential temper-
ature by using a constant thermal expansion coefficient; the correction is, however, minimal. The tempera-
ture profile at each time step is reordered to obtain the stably stratified reference profile, and to obtain an
estimate of the Thorpe scale as the RMS displacement of water parcels in this process. To avoid extrapola-
tion of stratification outside the mooring, fluid parcels are never displaced outside the top and bottom of
the mooring. A threshold of 5 � 1025�C is used to remove overturns indistinguishable from noise. When
comparing these results to those from frequency spectra, further time averaging is performed, in order to
match the lower time resolution of the LE time series (see section 2.2.2). For further discussion of the com-
putation of Thorpe scales in a comparable data set, see van Haren and Gostiaux [2012].

The probability density function of the logarithm of the Thorpe scales thus obtained is shown in Figure 2a
for mooring 1. A typical size of the overturns is 10 m, and we note that while the vertical resolution (0.7 m
for mooring 1) is sufficient to resolve the left tail of the distribution, the mooring length is imposing a cutoff
to the right tail, i.e., overturns larger than the mooring are present. We thus have to be careful when com-
paring the largest values of LT to LE, as only the former is limited by the mooring length. Note that the
Thorpe scale is computed as the RMS of the displacement over one profile, and thus even the largest over-
turns, which locally give displacements of approximately 100 m, are characterized by a Thorpe scale in Fig-
ure 2 shorter than the mooring length (since we do not consider displacements longer than the mooring).

The largest overturns, and those closer to the bottom, may also be influenced by the presence of the solid
boundary, breaking the relation between Thorpe scale and Ozmidov scale, thus biasing the estimation of
�LT . Since isolated overturns are not present in our data set we cannot follow the classical approach of
assigning one value of the Thorpe scale to each isolated overturn. However, if we consider the local dis-
placement (i.e., the displacement needed to reorder the profile at each different depth), two clear patterns
are visible. The mean displacement is larger at the top and at the bottom, as the mean is dominated by the
largest overturns, spanning the whole mooring. If the RMS displacement is computed at each depth sepa-
rately (i.e., RMS of displacement at different times rather than at different depths), it is approximately con-
stant throughout the mooring. These two quantities seem to be affected by the solid boundary only in the
region approximately within 5 m from the bottom of the mooring, with a decrease of both the mean and
the RMS. This gives us confidence that the boundary is not influencing the relation between Thorpe and
Ozmidov scale strongly, in particular when column averages are taken. These issues are even less relevant
at mooring 2 (Figure 2c), for a combination of smaller overturns (typical size approximately 1/2 the one at
mooring 1) and the use of a longer mooring (see Table 1).

The presence of the solid boundary may also affect the turbulent motions at small scales, breaking the rela-
tionship between Ozmidov scale and dissipation rate, and consequently invalidating equation (1). We are
however confident that this issue is not important here for various reasons. First, the displacements are only
marginally affected by the solid boundary, and only within the lowest part of the mooring. Second, models
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of the dynamics above sloping boundaries with similar characteristics to those observed here indicate that
the region where the classical ‘‘law-of-the-wall’’ model, with dissipation rate enhanced approaching the bot-
tom, is relevant only within a thin layer 5–10 m thick above the solid bottom [Slinn and Levine, 2003; Umlauf
and Burchard, 2011]. Previous measurements above sloping topography, using sensors to within 0.5 m from
the bottom, showed that stratification virtually reached the bottom. This suggests that this layer of intense
turbulence close to the bottom may in fact be even thinner than what the models suggest.

In order to check our computation of the Thorpe scale from the temperature profiles, we computed the same
quantity from the density profiles of the CTD survey discussed in section 2.1. The comparison of these two
estimates cannot be very detailed, since the CTD and thermistor data only approximately overlap both in time
and space, and also because the resolution and SNR ratio of the CTD are lower than for the thermistors. How-
ever, the RMS displacement computed within 100 m from the bottom (approximately the same range of the
moorings used here) is consistent with the values from the thermistors, as shown in Figures 2a and 2c.

Using the reordered temperature profile, the buoyancy frequency can further be estimated at each time step,
and �LT can thus be computed using (1). Both LT and �LT are a function of time alone, since LT is the RMS of dis-
placement of each vertical temperature profile, and the column average of N is used (values at the top and
bottom thermistors excluded). In mooring 1, approximately 80% of the points in the data set have nonzero
displacement. In mooring 2, approximately 50% of the points have a nonzero displacement value. Taking into
account the fact that displacements over one overturn should sum up to zero, even higher overturning frac-
tions are obtained in particular for mooring 1, for which the overturning fraction is close to 100%.

The probability density function of the buoyancy frequency is shown in Figure 2b for mooring 1. The mean
values of N are of order 1023s21 at mooring 1, first and 99th percentiles of the distribution are N1 � 2

Figure 2. Probability density function of the logarithm of the Thorpe scale ((a) mooring 1, (c) mooring 2) and of the logarithm of the buoyancy fre-
quency ((b) mooring 1, (d) mooring 2). The mean (vertical red line) and median (vertical green line) of the ensembles are also shown. In Figures
2b and 2d, the pink lines mark N1 and N99. RMS displacement from the CTD casts, computed within 100 m from the bottom in each CTD cast sep-
arately, is also shown with the black filled triangles (first survey) and the empty circles (second survey) in Figures 1a and 1c. The probability den-
sity function of 2 m-binned buoyancy frequency computed using the CTD data in the same depth range is shown in black in Figures 1b and 1d.
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�1024s21 and N99 � 5 � 1023s21. At mooring 2 the distributions of N are shifted to the left, with mean
approximately 8 � 1024s21 and smaller first and 99th percentiles (N1 � 1 � 1024s21 and N99 � 2 � 1023s21)
than at mooring 1. At mooring 2, N-distribution also has a broader peak than at mooring 1 (see Figure 2d),
but higher values of N are markedly less frequent, with a very short right tail of the distribution. All the sta-
tistics of N are computed excluding the values of the top and bottom thermistors, since the value of N is
less reliable there, being computed using backward/forward differences instead of centered ones. Figures
2b and 2d suggest that the vertical resolution of the two moorings imposes a cutoff to the highest values of
N, in particular in mooring 2, having a vertical resolution of 1 m, to be compared with the 0.7 m of mooring
1. The presence of this cutoff is, however, less evident than for LT in Figure 2a. This cutoff is a consequence
of resolving only a small portion of the temperature variance turbulent cascade, an unavoidable limitation
of these kind of measurements, shared by all but the highest resolution temperature measurements in the
ocean. To further check the results from the thermistors, N is computed within 2 m-high bins using the CTD
data, in the region within 100 m from the bottom. The probability density function of the buoyancy fre-
quency thus computed is shown with a black line in Figures 2b and 2d, and confirms that from the
thermistors.

2.2.2. Ellison Scale Analysis
In order to compute the Ellison scale according to the definition (2), the temperature variance has to be esti-
mated. The Thorpe scale is here the RMS of displacements over the whole mooring, as computed at each
time step, i.e., it is a function of time. To compare the two length scales, the Ellison scale has to be com-
puted as a function of time as well, and thus temperature variance has to be estimated over moving win-
dows of the time series. On top of this, if the variance is estimated from temperature fluctuations at all time
scales, the estimate of LE will be strongly biased by the presence of internal wave motions, as noted already
by Itsweire et al. [1986], and confirmed here (see section 3).

For these reasons, we use a time-frequency decomposition of variance, which provides an estimate of var-
iance as a function of time, considering fluctuations with time scales up to a cut-off s. One of the most com-
monly used time-frequency decompositions is the wavelet transform, which effectively is a series of filters
producing an octave decomposition of a time series. In particular, we use here the ‘‘maximum overlap dis-
crete wavelet transform’’ (MODWT) following the methods described in detail in Percival and Walden [2006].
This wavelet method is mostly equivalent to the more commonly used ‘‘continuous wavelet transform’’ [see
e.g., Torrence and Compo, 1998, for a practical introduction], but provides some computational advantages
[Percival and Walden, 2006] over the continuous version, and was chosen for this reason. The description of
the method is given in Appendix A, and here we briefly introduce only two quantities. The MODWT pro-
duces an estimate of the variance of temperature at each time step and in the interval of time scales
½2jDt; 2j11DtÞ, with Dt the time step of the time series and j the level of the MODWT. We write this variance
estimate <W2>M

j;t , where M indicates that M estimates of variance are averaged, with a nonoverlapping
moving average in time, to increase statistical significance. The main quantity that will be used is RM

J;t , which
is given by RM

J;t5
PJ

j51 <W2>M
j;t and represents the variance of the temperature time series at time scales

up to s52J11Dt.

As an example, Figure 3a shows <W2>M
j;t computed for the thermistor at the top of mooring 1. Figure 3a

shows the variance estimate for the time series in Figure 3c as a function of time itself (horizontal axis) and
time scale (vertical axis). The results in the figure use M 5 101, the value that is used throughout the paper.
This value of M implies that the time series of <W2>M

j;t has a time step of 707 s (we are working on a tem-
perature time series low-pass filtered and subsampled to a time step of 7 s). This value is a compromise
between higher statistical significance (higher M) and time resolution (lower M). Correlation between �LT

and �LE (as well as LT and LE) weakly depends on the value M, with higher M giving slightly better correlation.
However, a relatively small value of M is used in order to avoid reducing the observed range of values; aver-
aging over longer time intervals removes the extreme values, and in particular leads to the undersampling
of weakly turbulent phases. Figure 3b shows the spectrum of the same time series, computed both with a
classical Fourier multitaper method (blue line, described for instance in the review of Ghil et al. [2002]) and
by summing over all times the squared wavelet coefficients from the MODWT (red line, see also Appendix
A). The figure shows that most of the time series energy is concentrated in the low frequencies, which corre-
spond to the semidiurnal tidal and to the inertial frequencies. This gives further confidence that by low-pass
filtering we neglect only a small part of the time series variance. The frequency band containing the
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semidiurnal tide frequency (second from below in Figure 3a) is particularly prominent, indicating that the
temperature fluctuations are dominated by the tidal signal. It is also interesting to note that the energy is
modulated at all frequencies, with particular strong variance at the beginning and end of the time series,
most likely in connection with the passage of mesoscale or submesoscale features at the mooring location.
Slow modulations are highly correlated among different bands, suggesting that larger scale motions have a
strong impact on the internal wave activity at all frequencies.

Once the MODWT is available, the computation of LE and �LE is straightforward. Using (2), LE is computed as:

LE5
ga
N2

h

RM
J;t

� �1
2
; (3)

where we used the notation d�h
dz 52

N2
h

ga, with g the acceleration of gravity and a the thermal expansion coeffi-
cient. Equation (3) expresses LE as a function of the variance (RM

J;t) in the time series up to the level J of the
MODWT. The choice of the value of J will be discussed in section 3. Note that Nh in equation (3) is just a
shorthand for temperature stratification, and the physically relevant N, i.e., the one in equation (1), may be
different if temperature is not a good proxy of density.

Similarly the LE-based estimate of the turbulence dissipation rate �LE follows from (1) and (3):

�LE 50:64
ðgaÞ2

N4
h

RM
J;t N3: (4)

The Thorpe scale LT has been defined as a single value for the portion of the column measured by the ther-
mistors (as the RMS displacement, see 1. and 2.2.1). Consequently, the estimates obtained for each thermis-
tor by using (3) and (4) will be averaged vertically to be compared with Thorpe scale based counterparts.
The importance of this averaging is further discussed in section 3.3. Also in (4), we distinguish between Nh ,
the local temperature stratification which the thermistors always provide, and N, the physically relevant
background buoyancy frequency, generally considered to be an average value over the overturn. The two
will in general be different also due to the effect of salinity. In these cases, the background N and its

Figure 3. (a) Results for MODWT from a single thermistor at the top of mooring 1 (depth 2109.9 m). The running mean of wavelet variance is shown, <W2>M
j;t , as a function of time and

period. The results are from a ‘‘least asymmetric’’ wavelet filter of length 8, and use M 5 101. The vertical red lines mark the coefficient furthest away from each boundary which is influ-
enced by boundary conditions (i.e., computed using values outside the original time series, see text). The log color scale saturates at the 2nd and 98th percentiles. (b) Spectrum of the
time series computed using a Fourier multitaper method (blue line) and using the wavelet decomposition (red line). The spectrum is normalized by the time series variance. (c) Time
series of temperature used in the MODWT shown in Figures 3a and 3b. The time axis has units of yeardays, i.e., 1 January 2013 12:00UTC is yearday 0.5.
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variation in time has to be recovered from other measurements, which will usually be profiles from ship-
borne CTD measurements. In this work, we will not consider in detail this latter case However, since N is
here well approximated by Nh, as discussed in section 2.2.1.

3. Results

3.1. Mooring 1
3.1.1. Time Scales
In the previous sections, the key point left unaddressed was the estimation of s, i.e., the cutoff time scale to
exclude internal wave motions from the estimate of LE. This point can now be addressed by evaluating the
validity of (3) and (4) applied to the data set of mooring 1. We evaluate the skill of our estimates by comput-
ing the cross correlation between LT and LE (written in short R½LT ; LE �), and between �LT and �LE (written in
short R½�LT ; �LE �). Table 2 collects the values of R½LT ; LE � and R½�LT ; �LE � computed for different levels J. We
recall the readers that the value of J determines the maximum period in the variance estimate RM

J;t , entering
equations (3) and (4). Table 2 shows that the correlation starts to drop for J greater than 7, i.e., periods lon-
ger than 30 min. This period roughly corresponds to 2pN21

99 (20 min for mooring 1). Correlations lagged in
time confirm that maximum correlation is attained for zero time lag (not shown). Based on this evidence,
we conclude that s is approximately 20 min. If, however, we use J 5 6 or J 5 7 for our estimates, we find
that LE systematically overestimates LT with the only exception of the largest overturns (see Appendix B). To
avoid overestimation, we will use the estimates with J 5 5.

It is worthwhile to analyze more in detail the process leading to maximum correlation for short time scales.
A water parcel is expected to return to its equilibrium position on a time of order N21. According to Thorpe
[2005], the typical decay time of Kelvin-Helmoltz instability may in particular be close to 30/N. Figure 4a
shows the average correlation computed in linearly detrended subsets, lasting 4 days each, of the full time
series of LT from mooring 1. The inset in Figure 4a suggests that an overturning patch typically lasts approxi-
mately 1.7 h (autocorrelation crossing the zero line). This value is consistent with the time scale expected
for gravity wave motions with N in the upper range of values found at mooring 1, but is shorter than the
time scale expected from the mean N. This suggests that horizontal motions are advecting the turbulent
patches through the mooring. Time lags longer than 1 h show anticorrelation, suggesting that an overturn-
ing event is more often followed by a quiescent period. Figure 4a also shows that the semidiurnal tidal
period of approximately 12.42 h is dominant in the LT time series, confirming that the turbulence dynamics
are to a large extent locked to the tide.

In Figure 4b, we consider the temperature autocorrelation function. Autocorrelation of temperature is com-
puted here from the two dimensional, time and depth dependent, temperature record and is lagged both
in time and in depth. A lag in depth means that the correlation is computed between copies of the data

Table 2. Cross Correlationa

J Max. Period

Mooring 1 Mooring 2

R½LT ; LE � R½�LT ; �LE � R½LT ; LE � R½�LT ; �LE �

1 28 s 0.82 0.73 0.73 0.55
2 56 s 0.83 0.74 0.73 0.55
3 1.9 min 0.84 0.76 0.72 0.55
4 3.7 min 0.84 0.76 0.72 0.54
5 7.5 min 0.85 0.77 0.71 0.54
6 15 min 0.85 0.77 0.71 0.53
7 30 min 0.84 0.75 0.70 0.51
8 60 min 0.82 0.71 0.66 0.45
9 2 h 0.75 0.59 0.61 0.38
10 4 h 0.66 0.47 0.61 0.39
11 8 h 0.62 0.41 0.64 0.43
12 16 h 0.56 0.35 0.60 0.34
13 32 h 0.57 0.34 0.62 0.36

aCross correlation between LT and LE, and between �LT and �LE , in the two moorings. The J reported in the first column is the maxi-
mum level used for computing RM

J;t in (3) and (4). The second column reports the maximum period nominally included in RM
J;t . In all

cases, M 5 101. Taking into account the autocorrelation of the time series with the method of Ebisuzaki [1997], all the values of cross
correlation reported are above the 99% significance level, thanks to the length of the time series.
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vertically shifted by multiples of the thermistor separation. The use of a two-dimensional correlation func-
tion has the aim of identifying the decorrelation time of temperature with itself, taking into account the fact
that vertical displacements can reduce the correlation computed at a fixed depth. The time series is strongly
self-correlated due to the tidal signal, at time scales longer than those of turbulence, and not relevant here.
For this reason, the computation is performed on subsets of the complete time series, each of length
approximately 4.8 h. Linear detrending of each subset is performed both in time and depth. The results in
Figure 4b show that this detrended temperature profile is not correlated with itself after approximately 30
min, and most of the correlation is lost already after 5 min. Correlation is maximum for zero depth lag (cor-
relation for zero depth lag is reported in the inset), most likely due to the fact that we are looking at time
scales faster than most of the waves in the system. The results from this brief study of the autocorrelation in
the data set thus support the conclusions drawn from Table 2. The loss of self-correlation of the tempera-
ture signal is likely due to the incoherent (turbulent) motions above the internal wave band, as suggested
by considering the time scale 2pN21

99 (approximately 20 min, drawn as a black dotted line in Figure 4b),
which corresponds to an autocorrelation at zero depth lag of approximately 0.1. Loss of correlation is prob-
ably due to horizontal advection too. In practice, by using J 5 5 in the MODWT we limit s nominally to 7.5
min (black dashed line), corresponding to an autocorrelation of temperature at zero depth lag of 0.4. We
remember, however, that spectral leakage will lead, to some extent, to the inclusion also of longer periods.

3.1.2. Length Scales and Turbulence Dissipation Rate
Figure 5a shows LE computed using equation (3) as a function of LT. In equation (3) we used J 5 5 and
M 5 101, meaning that the quantities are all averaged to a time step of 707 s. We find that LE based on the
MODWT provides on average a good estimate of LT computed by reordering the temperature profile.
Medians of the estimates are shown as red triangles in the figure, computed in 14 bins equally spaced in
the log 10ðLT Þ space. The dispersion of the estimates is less than a factor of 2 (0.3 in the logarithmic space of
the plot), as measured by their RMS (red error bars in the figure). LE underestimates, on average,
LT at large values. This has to be expected since (3) is based on a linear approximation, breaking
down for larger values of the displacement. On the other hand, there is a tendency to overestima-
tion of LT by LE for smaller overturns, substantially less evident than in Itsweire [1984] and Smyth
and Moum [2000]. This overestimation is probably due to a combination of residual internal wave
signal and to the non uniformity of the temperature gradient. For a discussion of the effect of
using different values of J in the wavelet-based estimates, see Appendix B. Finally, we note that
the length of mooring 1 imposes a cutoff for large LT, already shown in Figure 2a, which appa-
rently does not affect the MODWT-based estimates of LE.

Very similar conclusions can be drawn from Figure 5b, which shows �LE as a function of �LT . Correlation is in
this case slightly lower, but the method based on the MODWT still provides, on average, a good estimate of

Figure 4. Autocorrelation function of (a) Thorpe scale and (b) temperature at mooring 1. Figure 4a shows correlation lagged in time, with the detail close to zero lag in the inset. The
gray shaded area marks the 99% confidence interval of the correlation. Figure 4b shows correlation lagged both in time (horizontal) and in depth (vertical), computed from the two
dimensional, time-depth dependent, temperature field. In the inset of Figure 1b, the autocorrelation for zero depth lag is reported. The red contours mark correlation values of 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. The black vertical lines mark the maximum period nominally included in the estimates from MODWT (dashed) and 2pN21

99 (dotted); see text for details.
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�LT . The spread between the two
quantities is also in this case larger
for higher values, but the effect of
the large scale cutoff in LT is not
obvious as in Figure 5a, since N is
included in the estimate (see equa-
tion (4)). However, it is very likely
that a significant number of the
largest �LT values is underestimated
due to the cutoff in LT.

3.2. Mooring 2
The analysis described for mooring
1 was applied to mooring 2, the
results being shown in Figure 6. In
this case, the lower values of N lead
to the use of a higher J. In particular,
given that 2pN21

99 � 30min, we use
J 5 6, i.e., we include periods nomi-
nally up to 15 min, still providing
high correlation as shown in Table
2. As discussed for mooring 1 this
represents a conservative choice
providing good results. The same
procedure applied to these two
data sets leads to lower correlation
between LT and LE and between �LT

and �LE in comparison with mooring
1. The reasons for the worse agree-
ment are the broader distribution of
N (which makes the linear approxi-
mation worse) and the lower SNR in
these data sets as compared to the
one from mooring 1. Figure 6a
shows that the largest LT’s are well
resolved, mostly due to the pres-
ence of few large overturns rather
than due to the use of longer moor-
ings. This is clear also from Figure

6b, which shows that the highest values of turbulence dissipation rate in mooring 2 is at least an order of
magnitude smaller than in mooring 1.

Despite these differences, the results from mooring 1 are confirmed. There is strong correlation between the
quantities computed by reordering the temperature profile, and those computed by analyzing the variance in
the temperature time series. Mooring 2 shows that LE and �LE systematically underestimate their Thorpe scale-
based counterparts for the largest events, a fact that was not clear from mooring 1 due to the cutoff of large
overturns therein. The Thorpe scale is in fact underestimated by LE also for smaller values in mooring 2.

Above �LT � 1027m2s23, the LE-based estimates tend to underestimate more their LT-based counterparts,
even if the high dispersion and the relatively few samples prevent a clearer identification of the change in
behavior. This underestimation is most likely a combined effect of the broader N distribution and of the filter-
ing procedure applied here. In particular, by considering variance only in a portion of the frequency spectrum,
we neglect the overturns associated with longer time scales (i.e., the ones whose dynamics are linked to
weaker stratification). As discussed above, the J-level we use is a conservative choice, which can lead to under-
estimation of the Thorpe scales counterparts. The variability of N and the spectral leakage make different

Figure 5. Results from mooring 1, using J 5 5 (longest nominal period 7.5 min). (a) LE

as a function of LT. Each Gray dot is an estimate based on running averages over
707 s (see text). The black contours show the probability density function of the
results, estimated with a Gaussian kernel Jones et al. [2001]; the contours mark the
values of the probability density function at intervals of 0.1 starting from 0.1. The blue
line marks LE 5 LT. The red triangles mark the median of the distribution of points,
computed in 14 bins; the error bars are the RMS of the distribution. Correlation
between LT and LE is reported from Table 2. (b) Same as Figure 5a but for �LE and �LT .
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choices of J possible, but a conserva-
tive approach has to be preferred in
our view. The filtering procedure is,
in any case, essential to have a high
correlation between the different
estimates, as discussed with Table 2.
We cannot rule out the possibility
that the underestimation may in fact
be the result of the overestimation
of the Ozmidov scale by the Thorpe
scale for the largest overturns. This
may be an important advantage of
this technique, but a comparison
with direct measurements of dissipa-
tion is necessary in order to under-
stand if this is actually true.

3.3. Impact of Spatial and Time
Resolution
An interesting question to be asked
is how sensitive the method is to
changes in the spatial and time
resolution. In particular, we consider
four cases in Figure 7 (see also Table
3), for both mooring 1 and 2.

First, we compute the MODWT esti-
mates using only the thermistors
occupying the central 1/5 part of
the mooring (case ‘‘cen’’, circles in
Figure 7). This estimate closely
matches the one from the complete
data set for mooring 1, in fact giving
a better agreement with the Thorpe
scale for the largest overturns (Fig-
ure 7a, circles systematically closer

to the blue line than the triangles), but a systematic underestimation of the turbulence dissipation rate (Fig-
ure 7b). For mooring 2, on the other hand, both overturn scales and turbulence dissipation rate are underes-
timated with respect to the use of the full data set.

Second, we assess the importance of time resolution. The impact of a lower sampling rate in the original
time series is discussed in Appendix C. Here we consider instead the case in which temperature can be
measured at the sampling rate used throughout this work, namely 7 s (see section 2.2.2), but only for a lim-
ited amount of time every day. In particular, we show in Figure 7 the case in which the temperature var-
iance is estimated twice a day over 707 s (the averaging period used in the MODWT analysis, see section
2.2.2). In the figure, these results are marked with a square (label ‘‘sub’’). We see that for this case the agree-
ment with the full data set is good, apart for the highest values of LE and �LE , having lower statistics.

The essential role of averaging is confirmed by computing the estimate on the central one fifth of the mooring,
also using only two estimates per day (‘‘cen sub’’ case, stars in Figure 7). The means of the distribution, shown
in the figure, are noticeably noisier and a systematic low bias is seen in the bottom plots for mooring 2.

Finally, we assessed the effect of reducing vertical resolution, in particular using one thermistor every 20 m
when computing LE, but using instead information from all the thermistors for LT (case ‘‘res’’, crosses in Fig-
ure 7). The agreement is very good for mooring 1, while a tendency to underestimate the results from the
full data set is observed in mooring 2. The limited impact of a reduction in vertical resolution is connected
with the fact that the stratification is approximately constant on the scale of the mooring.

Figure 6. Same as Figure 5 for mooring 2. For this mooring, J 5 6 was used (longest
nominal period 15 min, see text).
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Overall, we can conclude that the method is robust to reductions in vertical and temporal resolution. How-
ever, this positive result must not be overstated; the robustness of the ensemble average to changes in
resolution holds only if the data set size is large enough to allow statistical convergence. The method is par-
ticularly robust for mooring 1, which spans a longer period of time and measures stronger turbulence and
larger overturns than mooring 2. In the latter, on the other hand, the overturns are sparser in the time-
depth plane and smaller, leading to the underestimation of the average turbulence level when variance is
computed on a more limited portion of the water column.

4. Discussion

The results presented in the previous sections
demonstrate that the analysis of temperature
variance is a viable alternative to Thorpe scales
analysis when sufficiently high time resolution is
available. In the best case scenario, which is rep-
resented here by mooring 1, the results from the
MODWT can provide a quantitative estimate of

Figure 7. Similar to Figure 5, but showing only the median of the estimates for different kinds of subsampling (see table 3 and text). (a and b) Results from mooring 1, (c and d) results
from mooring 2. The results for J 5 5, shown in greater detail in Figure 5, are in red and with an error bar equal to the RMS of the distribution.

Table 3. Subsampling Testsa

Name Description

ref Reference case, using full data
cen Data only from the central 1/5 of the mooring
sub Data subsampled in time
cen sub Central 1/5 of the mooring, subsampled in time
res Using only 1 thermistor every 20 m

aSummary and naming convention for different kinds of sub-
sampling used to test the robustness of the results. For more
details, see text.
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LT and of �LT over a wide range of values, on average approximately to within a factor of 2. Even for more
challenging data sets, however, as those recorded at moorings 2 and 3 (lower SNR, larger spread and lower
values of N), the analysis technique described here can provide valuable information. Furthermore, the tech-
nique can reliably distinguish phases with stronger turbulence from phases with weaker one at a mooring
location, even when the quantitative agreement is lost. In other words, linear correlation between the two
estimates is present even if the slope of a linear fit is markedly smaller than 1 (e.g., mooring 2) or even if a
constant shift is present (e.g., for J 6¼ 5 in mooring 1).

It must be stressed here that the correlation between �LE and �LT is for the largest part due to the correlation
between the temperature variance and LT. In other words, correlation between �LE and �LT is not a conse-
quence of using the same N in the computation of the two estimates. In fact, N is only weakly correlated
(order of 0.1) with �LT , while RM

J;t has a much higher correlation with �LT (order of 0.6).

To identify the sources of error in equation (2), we first consider the propagation of the uncertainty of the
temperature measurement. The relative uncertainty of equation (2) can be written as:

eLE

LE
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2

h02
1=2

h02
1

e@�h=@z

j@�h=@zj

� �2

vuut
;

where ex=jxj represents the relative uncertainty of x, and where the covariance terms are neglected. The
first term on the right hand side can be interpreted as the squared inverse of the SNR of the thermistors.
Considering the second term, we note that the uncertainty of @�h=@z can be written as
e@�h=@z=j@�h=@zj5eh=ð

ffiffiffi
2
p

Dzj@�h=@zjÞ, with Dz the vertical spacing of the thermistors, whose uncertainty is
neglected, and taking e�h5eh, surely an overestimate. Covariance terms are again neglected, and the uncer-
tainty is assumed to be a constant for all thermistors. The factor 1=

ffiffiffi
2
p

is due to the use of centered differen-
ces in the computation of the gradient. Using the definition of Nh , the uncertainty of LE can be written as:
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: (5)

Considering the sensor noise as the largest source of error, a SNR for temperature better than 102 (for the
high frequency variations) should be sufficient to have a precise estimation of LE if only the first term on the
right hand side of (5) is taken into account. Considering Figure 3, we see that at mooring 1, typical variations
of temperature at periods shorter than 15 min are of the order of 1022�C (as confirmed by considering the
MODWT decomposition of the whole data set; note that Figure 3 shows the variance rather than the RMS of
the time series). The SNR is thus well above 102 in mooring 1, having a typical noise level of 5 � 1025�C. The
other mooring represents a less optimal case, mainly due to the smaller temperature variations, closer to
1023�C in the frequency range considered. Using mean values from the data, the second term on the right-
hand side of (5) is the main contribution to the relative error, being approximately 10%. The relative error
grows as N22

h for weak stratification, and estimates with weaker stratification are thus more affected, likely
one of the reason for the worse correlation observed for mooring 2. However, in view of this error analysis
which does not explain the observed dispersion, we suggest that the main source of error in the results is in
fact the nonuniform stratification. In other words, (2) is a linear approximation, as it translates temperature
fluctuations into a length scale by means of the first derivative of the temperature profile. In presence of
finite displacements, changes in stratification will lead to inconsistencies between the temperature fluctua-
tion and the estimated length scale.

The method described here may have an important practical application. If only temperature measure-
ments are available, a nontight temperature-salinity relationship may produce inversions in the tempera-
ture profile which do not correspond to a density inversion. This problem is likely less limiting for the
method presented here. By estimating the overturns length scale through Eulerian measurements, i.e.,
measurements at a fixed depth, this method may provide an alternative to Thorpe scales estimation if suf-
ficient temporal resolution is available. Using a value of N from, e.g., climatological data, the turbulence
dissipation rate, or at least its variations in time with respect to a reference level, may be estimated. This
is particularly interesting considering the high correlation between the temperature variance and �LT men-
tioned above.
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Finally, it is worth discussing the link between our results and the classical problem of fine structure con-
tamination, as first discussed by Phillips [1971]. In this context, fine structure contamination describes the
leakage of power toward high frequencies of an Eulerian temperature signal in a layered medium. Fine
structure contamination hinders the computation of vertical displacement spectra from Eulerian measure-
ments of temperature in layered media. This problem, well known in the literature, is thought to render the
temperature frequency spectrum above the internal wave unusable [Garrett and Munk, 1971; Siedler, 1974;
McKean, 1974; Gostiaux and van Haren, 2012]. Fine structure contamination is definitely present in the data
sets presented here, since layers are present in the temperature profiles, in particular at mooring 1. How-
ever, the results show that there still is precious information available in the high frequency part of the tem-
perature spectrum, despite fine structure contamination.

5. Summary and Conclusions

We discussed different ways of estimating overturning length scales from records of temperature. We out-
lined a method for estimating the scales of overturns using frequency spectra of temperature beyond the
internal wave band, using Eulerian measurements from moored thermistors. We presented two recent
oceanographic data sets of temperature, recorded close to the bottom at different slopes of Seamount
Josephine (North Eastern Atlantic Ocean). We found strong correlation between Thorpe and Ellison scales in
these observations, similarly to previous numerical and laboratory experiments. We pointed out the impor-
tance of a time-frequency decomposition of variance in order to find a good correlation between Thorpe
and Ellison scales in oceanographic data sets. In particular, we observed the highest correlation when fre-
quencies beyond the internal wave band are considered, and we linked this to the loss of autocorrelation of
the vertical temperature profile, probably due to diabatic process. Finally, we discussed that these results
suggest a possible use for records that suffer from fine structure contamination.

The method presented is particularly interesting if sufficiently long time series are available, from which the
correlation between mesoscale dynamics and turbulence can be inferred, a subject that we aim to explore
in detail in the future. Further work is also needed in order to understand if the method can be applied in
regions far from the bottom, with weaker and more intermittent turbulence. Further work will also be
devoted to the analysis of the temperature fluctuations at the highest frequencies recorded in the data,
which we removed here (by subsampling the time series), their link to turbulence dissipation rate and their
intermittency in space and time.

As a final important remark, we note that the results leave open the issue of the accuracy of the estimates in
comparison to those from shear measurements using microstructure profilers. Such a comparison would be
particularly interesting considering that �LT is likely overestimating the real turbulence dissipation rate during
the initial phase of the turbulence evolution and possibly underestimating it during the late stage of turbu-
lence decay, as suggested by the numerical simulations of Smyth and Moum [2000] and Mater et al. [2013]. If
this is true, it may be worth considering �LE for estimating turbulence dissipation rate during these phases. In
this respect, the present work may contribute to a better understanding of the distribution of turbulence dissi-
pation rate in the ocean.

Appendix A

Here we shortly present the MODWT decomposition method following the summary given in Cornish et al.
[2006]. For further insight into the theoretical and practical aspects of the MODWT, we refer to Percival and Wal-
den [2006, in particular chapters 5 and 8]. Consider the time series of one thermistor at a fixed depth, hðtÞ,
whose value at time t is denoted Ht. Given a finite length time series fHtg with unit time step, sampled at times
t50; 1; . . . ; ðK21Þ, we want to decompose it in J0 time scales s52j21, with j51; . . . ; J0. The value of J0 is limited
by the length of the time series to values smaller than log2 K i.e., time scales shorter than K=2. This is not a con-
straint in our analyses, given the length of the time series and the relatively low J0 used. At each level j and
time t, the decomposition implies the application of a wavelet filter (fhj;lg, high-pass) and a scaling filter (fgj;lg,
low-pass), providing a set of wavelet (fWj;tg) and scaling (fVj;tg) coefficients respectively. In their simplest form,
fhj;lg and fgj;lg perform, respectively, a running differentiation and running mean of the time series. The filters
fhj;lg and fgj;lg can be computed at each level j by stretching the j 5 1 base filters. The length of the filters at
each level is Lj5ð2j21ÞðL21Þ11, with L being the length of the base filter; in other words, the index l of fhj;lg
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and fgj;lg runs from 0 to Lj21. Using ‘‘reflection boundary conditions’’ to reduce the impact of the time series
being of finite length and nonperiodic, a new time series is defined from the original one:

f ~Htg5
Ht for t50; . . . ; K

H2K212t for t5K; . . . ; 2K21:

(

The wavelet and scaling coefficients are then defined iteratively for each j as:

Wj;t5
XLj 21

l50

hj;l
~H j;t2lmod 2K

Vj;t5
XLj 21

l50

gj;l
~H j;t2lmod 2K ;

(A1)

where mod represents the modulo operation. Equation (A1) is used first (at level j 5 1) on the original time
series with ‘‘reflection boundary conditions’’, i.e., f ~H1;tg5f ~Htg. For higher j levels, the procedure is iterated
using the scaling coefficients obtained at the previous j level, i.e., f ~H j;tg5fVj21;tg for j52; . . . ; J0. The residual
of the decomposition is fVJ0;tg, the scaling coefficients set at the maximum decomposition level. We stress
that in practice boundary conditions are to a large extent irrelevant here, since we will consider short time
scales compared to the time series length. The MODWT wavelet and scaling coefficients have then been circu-
larly shifted in time in order to align them with the original time series as described in Percival and Walden

[2006, p. 112]. Each wavelet coefficient set thus obtained nominally characterizes the period range ½2j; 2j11Þ,
an octave, or in other words the time scale 2j21. The correspondence between MODWT level and period
range is imperfect since the MODWT decomposition, as any other filtering procedure, suffers from spectral
leakage, i.e., leakage of power between nearby frequency bands. The wavelet coefficients set at each level has
zero average; together with the J0-level scaling coefficients set they conserve the time series ‘‘energy’’:

jjfHtgjj25
XJ0

j51

jjf ~W j;tgjj21jjf~V J0;tgjj
2; (A2)

where jjxtjj indicates
X

t

x2
t for a generic series xt. From (A2) a scale decomposition of the variance is

obtained:

r2
Ht

5
1
K
jj Htf gjj22Ht

2
5

1
K

XJ0

j51

jj ~W j;t
� �

jj21
1
K
jj ~V J0;t
� �

jj22Ht
2
; (A3)

where Ht is the mean value of fHtg. The time-frequency decomposition of the variance we were looking
for, at time t and level j, is thus ~W

2
j;t , whose expected value is the variance at the time scale 2j21. Since ~W

2
j;t

is effectively a random process, rather than considering a single realization of ~W
2
j;t we will perform a nono-

verlapping running average of M realizations to increase the statistical significance of the variance estimate:

<W2>M
j;t5

1
M

Xt1ðM21Þ=2

l5t2ðM21Þ=2

~W
2
j;l ;

defined for times t multiple of M and for odd M. Finally, we consider the sum over J � J0 levels:

RM
J;t5

XJ

j51

<W2>M
j;t; (A4)

which will be the key quantity used for computing LE. RM
J;t represents the variance in the temperature time

series at periods shorter than s52J11, and by changing J the variance up to different time scales can be
estimated.

In order to apply the technique outlined so far on the time series from each thermistor, the full data are first
low-pass filtered and subsampled to a time step of 7 s using a nonoverlapping moving average to speed up
the computation. The maximum level of the decomposition (J0) is 13, which corresponds to a maximum
period of 32 h. The combination of a time step of 7 s with 13 decomposition levels guarantees that we
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include in the MODWT the whole
internal wave frequency band,
from fast gravity waves with typi-
cal period of 2pN21 to the inertial
motions (the inertial period at the
latitude of the moorings is approx-
imately 20 h). Furthermore, this
choice of time step guarantees
that we separate the inertial and
the semidiurnal lunar tidal
motions (period 12.42 h) in two
different levels. The subsampled
time series can at this point be
used to compute the wavelet and
scaling coefficients defined in (A1).
The computation is performed
using the pyramid algorithm
described in detail in Percival and
Walden [2006]. The software used
for this processing is available at
the address https://sourceforge.
net/projects/wmtsa/, and is mainly
a python translation of the Matlab
code available from the authors of
Percival and Walden [2006] at the
address http://faculty.washington.
edu/dbp/wmtsa.html. The wavelet
filter used is the ‘‘least asymmetric’’
one of length L 5 8. The results
presented here depend very
weakly on the choice of the wave-
let type; the length of the filter is
chosen as a compromise between
the temporal (short filter) and fre-
quency (long filter) resolution, and
also to minimize the influence of

the boundaries for the longest time scales considered. The need to circularly shift the coefficients is a fur-
ther reason to use the least asymmetric wavelets, since the phase shift introduced by them is known exactly
a priori.

Appendix B

As discussed in section 2.2.2 and seen in Figure 3b, the spectrum of temperature variations is red. As a con-
sequence, the estimates (3) and (4) are most strongly influenced by the lowest frequencies included in the
quantity RM

J;t (defined in equation (A4)). In order to check how dependent the results are on the value of J
used, we show in Figure 8 an overview of the results using J ranging from 1 to 7, for the data of mooring 1.
Figure 8 shows that J 5 5 is a conservative choice which gives high correlation without overestimating the
Thorpe scale based quantities. However, values of J ranging from 4 to at least 6 would still give a good
agreement with the Thorpe scale based counterparts not only for what concerns correlation (see Table 2),
but also for what concerns the order of magnitude. This is even more valid if the RMS of the estimates is
considered, shown in this figure only for J 5 5, and similar for the other values of J. While the value of N99

can provide a guide for choosing J, a conservative choice has to be preferred since the variations in time of
N and the unavoidable leakage of the filters will lead to the inclusion of some wave motions in the esti-
mates for larger J.

Figure 8. Similar to Figure 5, but showing only the median of the estimates with J rang-
ing from 1 to 9. The results for J 5 5, shown in greater detail in Figure 5, are in red and
with an error bar equal to the RMS of the distribution.
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Appendix C

As discussed in Appendix B, the estimates (3) and (4) are most strongly influenced by the lowest frequencies
included in the analysis. The highest J still giving good results is 6. The largest period nominally included for
this value of J is 15 min, and to resolve this time scale the minimal time step that can be used is 7.5 min. In
principle, this should approximately be the minimal time step needed for obtaining a reasonable estimate
of the Thorpe scale-based quantities with the wavelet method. However, this sampling rate also reduces
the value of M that can be used (number of successive variance estimates from MODWT averaged together),
unless a strong reduction of the dynamic range of LE and �LE is accepted. Given these issues, it is found in
practice that a sampling rate of 1 min is the minimum one providing results comparable to those shown in
this work.
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