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A B S T R A C T   

Evaluating a three-dimensional lake model requires large datasets of many variables, including velocity fields, 
that are seldom available. Here we discuss how to assess the performance of a model at multiple scales (in time 
and space) with data from standard monitoring systems, i.e., mostly limited to water temperature. The modeling 
chain consists of a lake hydrodynamic model (Delft3D-Flow) forced by an atmospheric model (WRF, Weather 
Research and Forecasting). The two models are tested on the case study of Lake Garda (Italy), where a 
comprehensive dataset of atmospheric and water temperature observations is available. Results show that a 
consistent picture of the inherent dynamics can be reproduced from a heterogeneous set of water temperature 
data, by distilling information across diverse spatial and temporal scales. The choice of the performance metrics 
and their limitations are discussed, with a focus on the procedures adopted to manage and homogenize data, 
visualize results and identify sources of error.   

1. Introduction 

When modeling thermo-hydrodynamic processes in lakes, two main 
factors guide the choice of the appropriate numerical model and of the 
calibration/validation procedure: one is the process to be investigated, 
and the other is the available data. Once the model has been chosen and 
the data gathered, the model is set up, calibrated and validated. It is 
usually assumed that, when the model reproduces reasonably well the 
observed data, it can be accepted as reliable, and used to address specific 
research questions. However, in principle, an exact and complete model 
verification can never be fully achieved (Oreskes et al., 1994), since the 
verification of a model implies the demonstration of its truth, which is 
only possible for closed problems. For the case of lake modeling, as of 
any natural system, the problem to be solved is inherently not closed and 
the numerical solution is always non-unique. Available measurements 
are often limited to water temperature data, and current velocity mea-
surements are missing. A given water temperature profile can hence be 

compatible with different velocity fields, and one-dimensional (1D) 
models have been successfully used to reproduce lake thermal dynamics. 
In a three-dimensional (3D) model, water temperature observations 
need to be supplemented with velocity measurements at several loca-
tions and with sufficient temporal resolution, to guarantee that both 
temperature and flow fields are consistently reproduced. In most real 
cases, however, such comprehensive datasets are not available. Thus, a 
viable option is using the largest number of (incomplete) data from 
standard monitoring systems (often not specifically designed for 
modeling applications), and carefully defining the modeling goals, so 
that the available observations are adequate for the specific scientific 
question. 

Usually, modeling studies approach environmental systems investi-
gating their behaviour on specific time scales. For instance, lake 
modeling applications may be divided into three categories: (i) long- 
term simulations and projections of future states under climate 
change; (ii) seasonal to daily dynamics of circulation and transport in 
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the whole lake system; (iii) short-term, non-stationary processes, such as 
internal waves, involving multiple scales from hours to several days. 

In case (i), large-scale temperature variations and long-term trends of 
water temperature (warming trends, most frequently) are investigated. 
Due to the substantial computational costs of long-term simulations and 
to the relatively low resolution, both in time and space, of climatic 
model output, such projections are commonly addressed by means of 1D 
models forced by climate change scenarios (e.g. Fang and Stefan, 2009; 
Perroud and Goyette, 2010; Kirillin, 2010; Piccolroaz and Toffolon, 
2013, 2018; Butcher et al., 2015; Valerio et al., 2015; Schwefel et al., 
2016; Schlabing et al., 2014, among others). Instead, 3D model simu-
lations in this field are still rare (Beletsky et al., 2006; Yamashiki et al., 
2010; Wahl and Peeters, 2014; Xue et al., 2017), and are normally 
evaluated on a monthly basis. 

At interannual to seasonal, or even daily time scales, as in case (ii) 
above, the range of the relevant physical processes to be resolved 
widens. This is the case of wind-driven circulations and up/downwelling 
effects, surface gyres and riverine intrusions, and their interplay with the 
spatial heterogeneity of the atmospheric forcing and topographic con-
straints. In the literature, several recent examples are available con-
cerning 3D short-term modeling studies of lake circulation and heat 
transport (e.g. Razmi et al., 2013; Bouffard et al., 2018; Piccolroaz et al., 
2019). In such a variety of investigations, even methods for model 
evaluation may be widely diverse. In general, a multi-site validation is 
performed, but the time resolution may range from monthly to hourly, 
or even sub-hourly time series (Pilotti et al., 2013; Råman Vinnå et al., 
2017). 

When approaching daily and shorter time scales (case (iii) above), 
lake temperature is directly affected by surface air-water heat and mo-
mentum exchanges. Also internal waves may be excited, which in turn 
modify the basin-scale circulation and promote temperature fluctua-
tions. Internal waves dynamics require high-resolution observations as 
temperature fluctuations may span periods ranging from several days to 
few minutes. Most of internal wave studies in lakes (e.g. Hodges et al., 
2000; Pan et al., 2002; Rueda and Schladow, 2003; Laval et al., 2003; 
Pilotti et al., 2013; Soulignac et al., 2017; Valerio et al., 2017; Dis-
sanayake et al., 2019) evaluated the models with hourly or sub-hourly 
temperature data sampled by moored thermistors. Frequently, the 
model performance in these applications is assessed with sophisticated 
tools, such as signal decomposition on basis functions (e.g., Fourier se-
ries and wavelet functions). 

Most of the above studies aimed at investigating targeted processes, 
for which the model was calibrated and validated. Few of them from 
comprehensive datasets, including water velocity measurements, 
whereas most of them relied on water temperature data only. In the 
present paper, we face the challenge of evaluating the performance of a 
3D lake model at all the time scales discussed above, by relying only on 
water temperature observations. The underlying idea is that coherent 
lake dynamics can be satisfactorily reproduced by distilling information 
from water temperature data at different spatial and temporal scales. 

A multi-scale evaluation also allows interpreting the capabilities of 
the model. For instance, to understand weaknesses and strengths of a 
lake model, specific attention has to be paid to the atmospheric condi-
tions forcing it. Indeed, weather forcing plays a key role in the devel-
opment of the lake thermal structure, as it directly regulates heat fluxes, 
lake mixing and circulation. In many lake models, atmospheric forcing 
variables are assumed as spatially uniform, or are obtained from inter-
polating observations at a few points (e.g. Strub and Powell, 1986; Laval 
et al., 2005, who both tested different wind fields and stressed the 
importance of temporal and spatial variability). More recently, spatially 
resolved atmospheric forcing from atmospheric models have been used 
(e.g. Pan et al., 2002; Valerio et al., 2015; Amadori et al., 2018), 
including output from numerical weather prediction models (e.g. Kelley 
et al., 1998; Wahl and Peeters, 2014; Baracchini et al., 2020b), and also 
suitable atmosphere-lake coupling procedures have been successfully 
tested (e.g. Song et al., 2004; Leon et al., 2007; Xue et al., 2017). 

In the present paper, we critically discuss the steps of setup, cali-
bration and performance assessment of a modeling chain composed of a 
hydrodynamic (Delft3D-Flow) model forced by an atmospheric model 
(WRF). The aim of our investigation is twofold: on one hand, we aim at 
demonstrating that the evaluation of a 3D model performance can be 
based on water temperature at multiple spatial and temporal scales. On 
the other hand, we show how the performance of the externally simu-
lated atmospheric forcing affects the results of the hydrodynamic model, 
again at multiple scales. To achieve these goals, we adopt two models, 
that are well known and widely used within the atmospheric and 
limnological communities, respectively, and suggest a practical 
approach for the evaluation of their performance by using data from 
standard monitoring schemes. 

The case study is Lake Garda in Italy, for which an operational model 
has not been developed. Indeed, we propose a paradigm to assess the 
performance of candidate lake models to be possibly adopted as oper-
ational standards (e.g. Wang et al., 2019; Baracchini et al., 2020b). 

The paper is organized as follows: once the case study is introduced 
(Sect. 2) and the available observations are described (Sect. 3), we 
present the modeling chain (Sect. 4), together with the quality mea-
surements used for testing the models performance (Sect. 4.3) and the 
calibration of the hydrodynamic model (Sect. 4.4). In the results section 
(Sect. 5), we first present an overview of performance of the two models 
against the available dataset (Sect. 5.1) of the lake model, then we 
specifically focus on different time scales moving from interannual 
(Sect. 5.2) to seasonal (Sect. 5.3) to sub-daily time scales (Sect. 5.4). 
Next, we test the spatial variability patterns of the temperature field at 
the lake surface (Sect. 5.5). Finally, we discuss our results (Sect. 6) and 
provide final conclusions (Sect. 7). 

2. Case study 

Lake Garda (see Fig. 1) is a large lake at the feet of the Alps in 
northern Italy, displaying a surface area of 368 km and a maximum 
depth of 346 m. The altitude of the water surface is 65 m above sea level, 
and its shape combines a long, narrow and deep trunk (length 30 km, 
width 3 km, maximum depth 346 m) in the northern part with a wider 
shallow sub-basin (maximum length 13 km, width 20 km and depth 80 
m) in the southern part. 

Over the last decades, Lake Garda has been deeply investigated and 
several data have been collected, although the protocols and monitoring 
actions adopted were not optimized for hydrodynamic studies. In-
vestigations based on remote sensing have been conducted since the ’90s 
(Zilioli et al., 1994), using data gathered from multi-spectral Landsat 
and Sentinel-2 sensors (e.g. Bresciani et al., 2018), ocean color radi-
ometers as MERIS and MODIS (e.g. Bresciani et al., 2011a), and imaging 
spectrometry from both satellite (Giardino et al., 2007) and airborne 
platforms (Bresciani et al., 2012). Lake Garda was extensively used as a 
case study for estimating indicators of water quality, such as 
chlorophyll-a and lake surface temperature (Bresciani et al., 2011b; 
Lenstra et al., 2014; Nicolantonio et al., 2015). Moreover, remote 
sensing techniques were used to map shallow water properties in the 
lake (Giardino et al., 2014), and algorithms for atmospheric correction 
of the signal were developed and tested (e.g. Guanter et al., 2010; 
Odermatt et al., 2010). As a LTER1 site, Lake Garda was the subject of 
long-term studies investigating the ecological state (see Salmaso et al., 
2017). Moreover, the lake was adopted as a case study for an experiment 
on homogenization of daily lake surface water temperature (LSWT) by 
merging data from 13 satellites from 1986 to 2015 (Pareeth et al., 2016). 

The typical meteorological processes of the region surrounding the 
lake have also been well investigated. In particular, the development of 
peculiar local wind circulations, induced by the thermal contrasts be-
tween the lake and the surrounding orography, have been documented 

1 https://lternet.edu/. 
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by means of observations and numerical modeling studies (Laiti et al., 
2013a, b, 2014; Giovannini et al., 2015). Moreover, a Wind Atlas for 
Trentino, including the area of Lake Garda, was produced on the basis of 
10-year long atmospheric simulations (2004–2013) with the Weather 
Research and Forecasting (WRF) model (Giovannini et al., 2014a). 

A series of preliminary experiments using three-dimensional hydro-
dynamic numerical models were also undertaken in the past (Casulli and 
Pecenik, 1994; Lovato and Pecenik, 2012), although limited to rather 
idealized conditions, such as constant and uniform wind field and/or 
constant eddy viscosities. More recently, numerical experiments (Ama-
dori et al., 2018) have been performed by forcing the Delft3D model 
(Lesser et al., 2004) with wind fields resulting from WRF model (Ska-
marock et al., 2008). These preliminary modeling experiments allowed a 
detailed description of the typical transport processes and circulations 
occurring in the lake under different seasonal conditions (i.e., different 
thermal stratification and typical wind field). However, these modeling 
efforts were hampered by the lack of in situ observations for model 
calibration and validation. A combined observation-modeling approach 
was adopted to reproduce episodic wind events (Piccolroaz et al., 2019) 
The authors showed that strong and long-lasting northerly winds can 
promote lateral flows influenced by the Coriolis force, and hence 
significantly affect the deep ventilation of the lake. Recently, the same 
hydrodynamic model setup was also used in two studies tracing the 
surface transport dynamics: Amadori et al. (2020) used the modeling 
results to test lake users knowledge on surface currents, and Ghirardi 

et al. (2020) integrated modeling with remote sensing to quantify a 
turbidity discharge event in Lake Garda. 

In the present study, the same modeling approach previously adop-
ted by Amadori et al. (2018, 2020), Piccolroaz et al. (2019) and Ghirardi 
et al. (2020), consisting in Delft3D-Flow simulations forced by WRF, is 
extensively tested against a comprehensive dataset of water temperature 
observations and weather stations measurements. An overview of the 
collected observations is provided in the following section. 

3. Observations 

For the purpose of the present work, water temperature data are 
gathered by merging: i) historical long-term series of data from in situ 
observations of the water column at different locations, ii) multi-site 
high-resolution profiles measured between 2017 and 2018 during a 
dedicated monitoring program, and iii) remote sensing data from 
various satellites. The dataset covers the period from 1990 to present, 
and merges data acquired with different techniques, under different 
projects, and by different institutions. At the same time, data from 
several weather stations are collected and compared with the results of 
the atmospheric model. Table 1 provides a summary of all the data used 
in this study, while the locations of the observation points are shown in 
Fig. 1. In particular, Table 1 provides details of the monitoring activities 
on the lake, including the time coverage of data, the data provider, the 
location of the stations, the sampling frequency, the relevant metadata, 
and the number of available measurements. The criterion adopted for 
the station codes (as reported in Fig. 1) is the following: water tem-
perature monitoring stations are named according to the operating 
institution (e.g., APPA, ARPAV1 and ARPAV2, IMAU and so on); remote 
sensing control points are named according to either the sensor (MODIS, 
AVHRR) or the satellite (LANDSAT8). In order to avoid confusion be-
tween water temperature stations and meteorological stations, the latter 
are numbered after the prefix MET according to the order they are listed 
in Table 1. In the following paragraphs, each dataset is described in 
detail. 

3.1. EPAs routine in situ measurements 

The current database of in situ observations provided by the Envi-
ronmental Protection Agencies (EPAs) of the Autonomous Province of 
Trento (APPA) and of the Veneto Region (ARPAV) represents the most 
complete time series of water temperature available for Lake Garda. 
Water temperature profiles are routinely collected on a monthly/bi- 
monthly basis. Water temperature profiles are measured through a 
shipborne Conductivity Temperature Depth (CTD) profiler. Data from 
APPA are available from 1990 up to the present. Measurements are 
taken in the ‘APPA’ monitoring point, located about 4 km south of 
northern shore of the lake (Fig. 1). In addition, APPA performs contin-
uous temperature measurements, recorded every hour, at 10 m below 
the water surface, through a buoy located close to the north-western 
edge of the lake. These data were also used in the present study and 
will be hereafter referred to as ‘APPA buoy’. ARPAV water temperature 
profiles are taken at several locations, but the longest series (2000 to 
present) are available at two points, namely Brenzone (the deepest point 
of the lake), indicated in the map as ‘ARPAV1’, and Bardolino, in the 
more shallow and wider sub-basin, indicated as ‘ARPAV2’. 

3.2. The 2017–2018 field campaign 

High-resolution water temperature profiles were collected from 
2017 to 2018 during a joint field campaign of the Institute for Marine 
and Atmospheric research Utrecht (IMAU, Utrecht University) and of the 
University of Trento (Toffolon et al., 2017; Piccolroaz et al., 2019). Data 
were acquired using a turbulence microprofiler (MicroCTD, distributed 
by Rockland Scientific International, Canada) operated at depths down 
to 100 m at four stations (see Fig. 1). IMAU1 point coincides with the 

Fig. 1. Map of Lake Garda’s monitoring stations and bathymetry, Easting and 
Northing refer to the UTM coordinate system. Insets: a) location of Lake Garda 
in Northern Italy; b) zoom on IMAU stations along a cross-section having the 
APPA point as mid-point. Note: the APPA-IMAU1 overlap. See Table 1 for more 
detail on the station coding. 
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APPA monitoring station. IMAU2 and IMAU3 are located on opposite 
sides with respect to IMAU1, respectively close to the western and 
eastern shores. Together, these three stations define a cross-section 
perpendicular to the lake main axis, which is oriented in a 
northeast-southwest direction. The fourth station, IMAU4, is located 
further south, near Limone. 

A total of 652 profiles are available from the period from March 3, 
2017 to June 11, 2018. The sampling time is always between mid 
morning and early afternoon. The upper 2 meters of each profile have 
been removed in the post-processing step due to non-homogeneous 
profiling speed of the instrument. 

3.3. Deep mooring 

Concurrent with the IMAU-UniTrento field campaign, temperature 
data were measured by a taut-wire submerged mooring station including 
a single point current meter and a thermistor chain. The mooring was 
deployed by NIOZ (Royal Netherlands Institute for Sea Research) a few 
km north of the ARPAV1 monitoring point (see Fig. 1). The local depth 
at the point where the instrument was installed is 344 m, with a bottom 
slope of about 3.6◦ (1 km scale). Temperature measurements were taken 
between 187 and 337 m below the water surface by 100 self-contained 
high-resolution temperature sensors (‘NIOZ4’) deployed at 1.5 m ver-
tical intervals, at a sampling rate of 0.5 Hz. Data were corrected for the 
electronic drift, and are available with a precision as small as 0.5 mK and 
a noise level of less than 0.1 mK (van Haren, 2018). 

The mooring started to operate on May 24, 2017 (10 UTC) and was 
recovered on May 31, 2018 (09 UTC). However, in the present study, 
temperature data until March 26, 2018 (23 UTC) only are used, since 

after then half of the temperature sensors failed, due to insufficient 
batteries, and therefore interpolation is not viable. Hence, we use a 
reduced set of hourly sampled data. 

3.4. Remote sensing 

Lake Surface Water Temperature (LSWT) data have been collected 
from different satellite sensors. The longest time series is taken from the 
dataset produced by Riffler et al. (2015) for European Alpine lakes 
(19892013). This dataset is based on the images from AVHRR 
(Advanced Very High Resolution Radiometer) onboard various NOAA 
satellite platforms. Within this database,2 LSWT is available on a daily 
basis as an average over a 3 × 3 pixel array (pixel size: 1 km) at two 
specific locations in the lake (we refer to Table 1 for the exact 
coordinates). 

In addition, six-year long multi-temporal records from MODIS 
products (MYD11A, derived from MODIS sensors onboard Aqua) are 
used in four stations in Lake Garda. The MODIS sensor from the Aqua 
satellite acquires surface temperature at 9:45 UTC. Both AVHRR and 
MODIS sensors have a pixel size of 1 km. We combine the daily output 
from those sensors with the spatially more resolved Landsat-8 satellite 
imagery. Landsat-8 images provide fine scale mapping of LSWT at 100- 
m pixel size (TIRS sensor onboard), with a biweekly revisit time. In this 
work, Landsat-8 products from 2013 to 2018 are obtained by 

Table 1 
Summary of all in situ and remotely sensed data used in this study.  

In situ water temperature data 

Time availability Institution ID East North Frequency Type of data Depth n 

1990–2018 EPA Province of Trento APPA 643286 5078237 monthly profiles 0–70 m 151 
2008–2018  APPA buoy 643308 5082367 hourly time series 10 m 78848 
2000–2018 EPA Veneto Region ARPAV1 634031 5062154 monthly profiles 0–330 m 137 
2000–2018  ARPAV2 630893 5045631  profiles 0–70 m 148 
2017–2018 IMAU-UniTrento IMAU1 643430 5078401 monthly profiles 2–100 m 20   

IMAU2 642544 5078596    18   
IMAU3 644214 5077921    18   
IMAU4 640555 5075483    14 

2017–2018 NIOZ NIOZ 635637 5063948 5 s profiles 187–337 m 5906 

Satellite products 

Time availability Satellite Sensor ID East North Frequency Pixel size Acquisition time n 

1989–2013 NOAA AVHRR AVHRR1 628235 5044098 daily 1 km see Riffler et al. (2015) 5117    
AVHRR1 637973 5067770    5117 

2004–2010 Aqua MODIS MODIS1 623394 5042025 daily 1 km 12:45 UTC 1302    
MODIS2 626743 5051353    1300    
MODIS3 631143 5040947    1302    
MODIS4 640711 5072895    1079 

2013–2018 Landsat-8 TIRS L8-1 623394 5042025 bi-weekly 100 m 09:50 UTC 25    
L8-2 626743 5051353    29    
L8-3 631143 5040947    57    
L8-4 640711 5072895    53    
L8 full maps 1440 pixels     18 

Meteorological data 
Time availability Institution ID East North Frequency Altitude* Wind meas.** n 

2004–2018 Edmund Mach Foundation MET1 643975 5082174 hourly 63 m asl 5 m agl 354415 
2004–2018 EPA Veneto Region MET2 637944 5041943 hourly 142 m asl 10 m agl 376358 
2012–2018 EPA Lombardia Region MET3 639088 5074143 hourly 74 m asl 16 m agl 162889 
2013–2018  MET4 633895 5065781  420 m asl 10 m agl 127213 
2012–2018  MET5 626016 5054923  67 m asl 21 m agl 161487 
2013–2018  MET6 617051 5048460  284 m asl 10 m agl 129299 
2017–2018  MET7 622300 5044545  66 m asl 6 m agl 18510 
2016–2018  MET8 617629 5041631  182 m asl 10 m agl 46563 

*m above sea level. 
**m above ground level. 

2 Data can be downloaded from https://doi.pangaea.de/10.1594/PANGAEA. 
830988 and https://doi.pangaea.de/10.1594/PANGAEA.830987 for upper/ 
lower Lake Garda respectively. 
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transforming TIRS radiances at satellite level in surface water temper-
ature (i.e., skin temperature) according to Barsi et al. (2005). For a 
similar use of these maps we refer to Prats et al. (2018), who used 
Landsat to estimate lake skin surface temperature for more than 400 
French water bodies. The full Landsat-8 maps are used when all pixels 
covering the lake surface are available (18 dates in 5 years). In addition, 
LSWT values at the same 1 km target areas of the MODIS Aqua products 
are extracted from the Landsat-8 maps, allowing a comparison of model 
output with data from different sensors. 

3.5. Meteorological data 

Several weather stations are spread all around Lake Garda, providing 
regular measurements of the main atmospheric variables. Ground 
weather stations are operated by various agencies, as shown in Table 1. 
In particular, the northernmost station (MET1) is operated by the 
Edmund Mach Foundation (FEM), the station on the east coast (MET2) 
belongs to the Enviromental Protection Agency of the Veneto Region 
(ARPAV), while the other ones (MET3 to MET8) to the Enviromental 
Protection Agency of the Lombardia Region (ARPAL). The height above 
the ground at which wind speed and direction are measured is not the 
same for all the stations (see Table 1). Air temperature and relative 
humidity are taken at 2 m above ground in all the weather stations. 

4. Model setup 

4.1. Atmospheric model 

The atmospheric simulations used in this work are performed with 
the Weather Research and Forecastig model (Skamarock et al., 2008). 
WRF was successfully used in previous studies to reproduce 
thermally-driven winds in the Alpine valleys surrounding Lake Garda 
(Giovannini et al., 2014b). Part of the simulations (period 2004–2013) 
are derived from the Trentino Wind Atlas (Giovannini et al., 2014a). The 
remaining part (period 2014–2018) has been performed ad hoc, adopt-
ing the same modeling setup as for the above Atlas. The computational 
domain is composed of four nested domains with decreasing horizontal 
grid spacing of 54, 18, 6 and 2 km respectively, each having 28 vertical 
levels. Initial and boundary conditions are supplied by the 6-hourly 
National Center for Environmental Prediction (NCEP) Final Opera-
tional Global Analysis data on 1-degree grids. The simulations are 
initialized at 00 UTC of the last day of each month and finish at the end 
of the following month; the first day, which is mostly affected by the 
initialization, is not considered. The model output is written every hour. 
The Noah scheme (Chen and Dudhia, 2001) is used as land surface 
model, while the Yonsei State University scheme (Hong et al., 2006) is 
adopted as planetary boundary layer parameterization. The long-wave 

radiation is parameterized with the Rapid Radiative Transfer Model 
(Mlawer et al., 1997), while the Dudhia scheme (Dudhia, 1989) is used 
for the short-wave radiation, including the effects associated with slope 
inclination and topographic shading. The microphysics scheme adopted 
is the WRF single-moment 3-class simple ice scheme (Hong et al., 2004); 
the Kain-Fritsch cumulus scheme (Kain and Fritsch, 1993) is used in the 
three outer domains, while no cumulus parameterization is adopted in 
the inner domain. In the two inner domains we adopt the correction for 
wind speed over complex terrain proposed by Jiménez and Dudhia 
(2012), which considers the effects of unresolved topographic features. 
The original resolution of the Digital Elevation Model adopted in the 
inner domain is 30” ( 0.9 km). In the present work, we use the hourly 
model outputs only from the inner domain, covering Lake Garda. 

4.2. Hydrodynamic model 

Lake thermo-hydrodynamics are simulated using the open-source 
modeling suite Delft3D (Lesser et al., 2004) over the period 2004 to 
2018, using the WRF output as forcing. Table 2 summarizes the main 
model settings. 

The domain is discretized by a non-uniform, locally-orthogonal grid, 
staggered along the horizontal and vertical dimension, with 64× 224 
cells and 100 vertical layers. The horizontal grid spacing is of 200 m, 
while the thickness of the vertical layers increases from 1 m at the 
surface to 25 m at the bottom. The simulation time step is set to 30 s, as 
required for numerical stability. Initial conditions for Delft3D are set as 
water at rest, constant water level, and horizontally uniform water 
temperature profile, equal to the profile measured by the EPA of the 
Veneto Region in the ARPAV1 point in December 2003. Secchi depth is 
provided as a monthly mean value according to the measurement 
available at ARPAV1 point. 

Vertical eddy diffusivity and viscosity are calculated with a k-ε tur-
bulence model. In the parameterization implemented in Delft3D, a 
background value for both coefficients is required in order to guarantee 
a minimum value taking into account sub-grid eddies. The background 
turbulent value is treated as a calibration parameter, then the molecular 
viscosity and diffusivity is added to the turbulent part. In our simula-
tions, the best performance is achieved by setting the background value 
of both viscosity and diffusivity to zero, such that the molecular value is 
used as a physically meaningful minimum and artificial mixing is 
avoided. Horizontal eddy viscosity and diffusivity are taken uniform and 
constant in the whole computational domain. Their value is essentially 
dependent on the spatial scale (Okubo, 1971), hence on the grid size. 
Preliminary tests showed that the simulated temperature is not sensitive 
to the choice of horizontal eddy viscosity and diffusivity: for this reason, 
the default value of 0.2 m2s-1 is chosen. The bottom roughness coeffi-
cient (Chezy formulation) is set to 60 m1/2s-1, as tests performed with 

Table 2 
Delft3D model setup and calibration parameters.  

Model settings    

Simulation time step 30 s Wall boundary conditions free slip 
Grid size 64 × 224 x 100 Heat fluxes model Ocean 
Horizontal grid spacing 100-400 m Turbulence model k-ε 
Vertical grid spacing 1-25 m Secchi depth monthly measured values 
Wind drag coefficient Cd* 4.40 × 10-3 Bottom roughness (Chzy) 60 m1/2 s-1  

1.00 × 10-3 Horizontal eddy viscosity 2 × 10-1 m2s-1  

2.00 × 10-3 Horizontal eddy diffusivity 2 × 10-1 m2s-1 

Calibration parameters Value Tested range of variation  

Stanton number 6. 50 × 10-4 1.77 × 10-4 — 2.00 × 10-3  

Dalton number 1.30 × 10-3 3.95 × 10-4 — 2.30 × 10-3  

Free convection coefficient 1.00 × 10-1 5.00 × 10-2 — 5.00 × 10-1  

Background vertical eddy viscosity [m2s-1] 0 0 — 1.00 × 10-3  

Background vertical eddy diffusivity [m2s-1] 0 0 — 1.00 × 10-3  

* Breakpoints for the piecewise linear function of wind speed (1–5–10 m s− 1) at 10 m above lake surface. 
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different values did not show much differences. The wind drag coeffi-
cient is defined as a piecewise linear function of wind velocity (at 10 m 
above ground level). After testing different relations for this parameter 
(e.g., Wahl and Peeters, 2014), a clear picture of its effect did not emerge 
from the simulated temperature profiles, so breakpoints values are 
chosen following Wüest and Lorke (2003). 

The surface boundary conditions (i.e., atmospheric forcing) are 
prescribed by the WRF model output every hour on a region covering the 
lake surface. The fields of wind velocity, air temperature, air pressure, 
relative humidity, shortwave incoming solar radiation and cloudiness 
are automatically interpolated by Delft3D on the lake model computa-
tional grid and time step. For the simulation of air-water heat exchanges, 
the ‘Ocean’ model is used, which is implemented in Delft3D in the 
version originally formulated for the North Sea, based on Gill (1982), 
and then extended to large lakes. The model parameterizes the total heat 
flux through the lake surface by computing each term of the heat bal-
ance equation in each horizontal grid cell. In order to take into account 
the shadowing effect of the mountains, the net incident solar radiation 
(short wave) is directly prescribed by the atmospheric model. The 
remaining terms of the heat budget equation are computed by the 
‘Ocean’ model from the meteorological variables provided by WRF. 
These terms are the net incident atmospheric radiation (long wave), 
which takes into account the cloud cover, the long wave back radiation 
(from the water to the atmosphere), the evaporative heat flux and the 
convective heat flux. The latter two terms are split into a contribution by 
forced and free convection. The forced convection of latent and sensible 
heat is related to the wind forcing and is proportional to wind velocity, 
multiplied by a calibration constant (Dalton for evaporative flux, Stan-
ton for convective flux). The free convection part includes the heat ex-
changes due to inverse temperature gradients between the 10 m air layer 
above the lake surface and the lake surface itself, when buoyancy fluxes 
develop in the atmospheric boundary layer due to unstable conditions 
(Gill, 1982). The relative importance of the free convection contribution 
to both latent and sensible heat flux can be regulated by tuning the free 
convection coefficient. In Table 2 the value chosen for the mentioned 
parameters is reported. 

The outputs of the hydrodynamic simulations are recorded every day 
at 10 UTC in the whole computational domain. At observation points, 
coinciding with the monitoring stations, instantaneous numerical out-
puts are recorded every hour. 

4.3. Assessment of the performance of the models 

The performance of both atmospheric and hydrodynamic models is 
assessed by evaluating the metrics summarized in Table 3. We select 
those metrics that have been most extensively used in environmental 
modeling applications (see e.g., Hipsey et al., 2020). 

Mean Absolute Error (MAE), Mean Error (ME, i.e., bias), Root Mean 
Square Deviation (RMSD), Standard Deviation (SD) and Correlation 
(CORR) are computed comparing simulated Mi and observed values Oi, 
where i = 1,…,N indicates time index and N the total number of ob-
servations. In Table 3, the bar symbol M(O) refers to the average over 
time of simulated (observed) quantities. An exception is made when 
comparing the water temperature from the hydrodynamic model and 
from Landsat-8 satellite maps: here i denotes a number of pixels, N the 
total number of pixels (as discussed later), M(O) the spatial mean over 
the lake surface. 

In order to account for the site-specific variability on the evaluation 
of the performance metrics, the Standard Deviation of the observed data 
(SDO) is used as normalization factor for computing the Normalized 
centered Root Mean Square Deviation NRMSD (according to Taylor, 
2001), and the Normalized Standard Deviation of model results NSD. In 
addition, the Nash-Sutcliffe efficiency (NSE) is computed to test the 
robustness of the hydrodynamic model results only. 

For both models, data from stations (point measurements) are 
compared with model’s output (gridded fields). Such a comparison is 
unavoidably affected by the different meaning of point-wise vs spatially 
distributed data. In fact, local observations may not be representative for 
a large surrounding area, and the computational grid of the model 
output may be too coarse to capture the local conditions observed at the 
monitoring stations. In this regard, errors may be introduced also by the 
discretization of the computational domain, either along the horizontal 
or along the vertical direction. An example of this effect can be found in 
both models: in the atmospheric model, when areas with steep slopes are 
smoothed and underrepresented, or when specific microclimatic con-
ditions at the transition between land and water are not appropriately 
captured; in the hydrodynamic model, when the vertical variation along 
the water column is not properly reproduced because of too thick layers. 
To overcome these issues, the metrics listed in Table 3 are computed by 
adopting some specific corrections, which will be presented in the 
following two subsections. 

Table 3 
Performance metrics.  

Mean Absolute Error Mean Error (bias) 

MAE =
1
N
∑N

i=1
|Mi − Oi| ME =

1
N
∑N

i=1
(Mi − Oi)

Root Mean Square Deviation Normalized centred Root Mean Square Deviation 

RMSD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
∑N

i=1
(Mi − Oi)

2

√
√
√
√ NRMSD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1 [(Mi − M) − (Oi − O)]
2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(Oi − O)
2

√

Standard Deviation Normalized Standard Deviation 

SDO =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
∑N

i=1
(Oi − O)

2

√
√
√
√ NSD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(Mi − M)
2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(Oi − O)
2

√

SDM =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
∑N

i=1
(Mi − M)

2

√
√
√
√

Correlation Nash Sutcliffe Efficiency (or R2) 

CORRMO =

∑N
i=1(Mi − M)(Oi − O)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(Mi − M)
2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(Oi − O)
2

√ NSE = 1 −

∑N
i=1(Mi − Oi)

2

∑N
i=1(Oi − O)

2   
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4.3.1. Atmospheric model 
The atmospheric model performance is evaluated by testing the 

simulated wind speed at 10 m above ground level, air temperature and 
relative humidity at 2 m above ground level, against measurements. In 
fact, these are the variables that mainly affect the results of the hydro-
dynamic model. For a fair evaluation of the atmospheric model perfor-
mance, we correct observations from those stations located on the north- 
western side of the lake, where a significant mismatch exists between the 
real and the computational orography. In these areas, the elevation of 
each model grid cell can be significantly higher than the elevation of the 
corresponding weather station, thus systematically affecting the air 
temperature, relative humidity and wind speed. 

1. Air temperature. Air temperature is corrected considering the alti-
tude difference between the model grid cell and the actual height of 
the weather station. We assume a constant lapse rate and use the 
mean standard tropospheric value Γ = − dT/dz = 6.5K ​ km− 1.  

2. Relative humidity. Relative humidity is corrected according to the 
air temperature above, without changes in the water vapour content 
simulated by the model. 

3. Wind speed. For consistency between measurements and model re-
sults, wind observations taken at different heights are extrapolated to 
the standard height of 10 m above ground level, assuming a loga-
rithmic profile for a neutrally stratified atmosphere. Deviations from 
the logarithmic profile are not taken into account, since data to es-
timate atmospheric stability are not available from the meteorolog-
ical monitoring network. We use a roughness length of 0.001 m for 
MET1 and MET7, as these stations are located on a dock, and of 0.01 
m for MET3 and MET5, located over grass (Oke, 1987). 

4.3.2. Hydrodynamic model 
When testing the performance of the hydrodynamic model, the 

structural inhomogeneity of observation data is an issue to be addressed. 
Since data are available in several formats (e.g., vertical profiles, pixels 
of different size from remote sensing maps), the variables M and O 
considered in the performance indices of Table 3 have to be computed 
according to the data format, for the comparison to be consistent. Below, 
we specify how we handle each source of data, using X to indicate the 
generic variable, either observed (O) or simulated (M), obtained by 
spatially averaging the single realization x.  

1. Water temperature profiles (APPA, ARPAV, IMAU, NIOZ). Observed 
and simulated values are averaged within layers of pre-defined 
thickness. The mean Xi,j value per each layer j at the i-th time step 
is computed as follows: 

Xi,j =
1
Nj

∑Nj

n=1
xi,n , (1)  

where xi,n, n = 1,…,Nj are the values within the j-th layer, at time i.  

2. Satellite time series at single pixels (AVHRR, MODIS, LANDSAT8). 
Observations are referred to a pre-defined area A generally larger 
than the single computational grid cell. Hence simulated values are 
computed by evaluating a horizontal average among the computa-
tional cells laying within A: 

Xi =
1
N

∑N

n=1
xi,n , (2)  

where xi,n, n = 1,…,N are the values within A and i is the time step. 

3. Satellite maps (LANDSAT-8 maps).The number of pixels where ob-
servations are available depends on the sensor resolution (100 m), 
the cloudiness conditions and the acquisition time. Satellite and 
model LSWTs are upscaled to a regular grid of 500 m grid spacing, 

which is comparable with the largest hydrodynamic grid cell. On 
these maps, the synthetic indices in Table 3 indicate space instead of 
time: hence the index i identifies a particular pixel, such that i =

1…N, with N the total number of up-scaled pixels where LSWT from 
satellites is available at each acquisition time. Although a bias might 
exist between the temperature retrieved from satellite imagery (skin) 
and the in situ water temperature (bulk) (e.g., Prats et al., 2018), in 
this study the skin-to-bulk correction is not applied. Such bias can 
reach up to few 

◦

C, it is larger during daylight hours, and is strictly 
dependent on the meteorological conditions (Wilson et al., 2013). 
Therefore, in order to overcome the skin-to-bulk issue, a centered (i. 
e., unbiased3) anomaly ΔcT is computed for comparing model results 
with Landsat LWST full maps. We determine this index in each i-th 
pixel of the maps as follows: 

ΔcTi =
(

Mi − M
)
−
(

Oi − O
)
, (3)  

where M (O) is the spatial mean of simulated (observed) temperature 
over the lake surface in one single scene, and Mi (Oi) is the single pixel of 
the scene. The computation of this index allows to filter out the inherent 
difference between remotely sensed skin temperature and the simulated 
lake surface temperature, assuming that this is associated with the 
respective biases. 

When moving down from monthly to daily and sub-daily scales, the 
range of temperature variations greatly reduces. In our dataset, tem-
perature data at a scale shorter than one month are only available from 
the APPA buoy (see Table 1 for the temporal resolution and Fig. 1 for the 
location of the point) and from the NIOZ thermistor chain. To analyze 
the performance of the model in these two points, we use the wavelet 
timefrequency analysis, which has already been applied to the pro-
cessing of non-stationary temperature signals in other lakes (e.g. Ante-
nucci et al., 2000; Boegman et al., 2005; Guyennon et al., 2014; 
Woolway et al., 2014). We perform this analysis on the time series of 
water temperature and wind. Both signals are decomposed by using the 
Morlet continuous wavelet (Grossmann and Morlet, 1984), in order to 
derive the variation in time of the power spectrum of dominant fre-
quencies (WPS, Wavelet Power Spectrum). By integrating in time the 
WPS, the Global Wavelet Spectrum (GWS) is also computed. This allows 
for an overall comparison between simulated and observed time series, 
based on a consistent estimation of the most energetic levels within their 
power spectrum. 

4.4. Calibration of the hydrodynamic model 

The hydrodynamic model is calibrated comparing the simulated 
water temperature profile in the APPA point with the corresponding 
measured temperature profiles in the biennium 2004–2005. The cali-
bration period is chosen so as to correctly reproduce one year of mer-
omixis (2004) and one year of complete overturning (2005). As 
anticipated in Sect. 4.2, the Delft3D model allows tuning a limited 
number of parameters, some related to the heat flux model (Stanton, 
Dalton and free convection coefficients), some to the turbulence model 
(background eddy viscosity and diffusivity, both horizontal and vertical) 
and to the boundary conditions at the surface and at the bottom (wind 
and bottom drag coefficients). In this work, we calibrated the Stanton, 
Dalton and free convection coefficients, and the background vertical 
turbulent terms. Table 2 lists the calibrated parameters, the adopted 
values, and the range of values tested, while in Table 4 the statistics from 
the calibration simulation are displayed in terms of the indices presented 
in Table 3. 

The indices of performance are computed on the temperature pro-
files in the APPA point considering 4 layers, defined in terms of depths as 

3 We refer to Taylor (2001) for the use of the term ‘centered’ in the sense of 
‘unbiased’. 
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0–2 m (surface), 2–20 m (epilimnion), 20–100 m (metalimnion), 100- 
bottom m (hypolimnion). In APPA point, bottom depth is 270 m. The 
performance of the model is quite satisfactory at all depths: the 
maximum MAE is obtained at the surface and in the epilimnion (1.08 

◦

C 
and 0.98 

◦

C respectively), corresponding to a RMSD of 1.49 
◦

C and 1.32 
◦

C. This error is below 30% of the standard deviation of temperature in 
both surface and epilimnion (NRMSD of 0.26 and 0.29). In these layers 
NSD, CORR and NSE indices are very close to 1, showing that the model 
is very well correlated with observations, even in case of extreme tem-
perature values. However, smaller MAE (0.33 

◦

C) and RMSD (0.39 
◦

C) in 
the interior layer are associated with a normalized error of the order of 
40%, as the standard deviation of temperature in the metalimnion is 
smaller than in the surface layer. Nevertheless, the good performance of 
the model is demonstrated by the other indices, which are still very close 
to 1. In the bottom layer, the order of magnitude of MAE and RMSD is 
the same as ME. CORR and NSD are close to 1 (0.95 and 0.91, respec-
tively), but NSE is below the “good” threshold value (0.5 according to 
Moriasi et al., 2007), suggesting that the error is small but systematic, 
and larger than the very limited variability of observations. As a general 
trend, the model bias (ME) is negative in all layers, indicating that the 
simulated temperatures are on average slightly colder (less than 0.5 

◦

C 

along the whole water column) than the observed ones. 

5. Results 

In this section, the models are tested against the whole dataset. The 
results of the long-term simulation on the period 2004–2018 are 
compared with observations in all the monitoring locations described in 
Fig. 1. The general performance of the atmospheric and hydrodynamic 
models is presented in Section 5.1, as a fundamental step ensuring the 
consistency of the subsequent analyses. Then, the analysis at different 
temporal and spatial scales follows in sections 5.2 -5.5. 

5.1. Overview of the model performance against the available dataset 

5.1.1. Atmospheric model 
Table 5 summarizes the performance metrics of the WRF model 

against wind speed, air temperature and relative humidity observations 
at hourly time resolution. 

The model tends to overestimate wind speed at all weather stations 
except MET2, with ME of the order of ~ 1 m s− 1. A similar over-
estimation of the wind speed, in particular in low wind speed conditions, 
is also found in other studies using WRF (e.g., Horvath et al., 2012). The 
simulated air temperature leads to negative ME at most weather sta-
tions, with the largest values at MET3 (− 1.39 

◦

C) and MET4 (− 1.79 
◦

C), 
while the highest MAE and RMSD are found at MET1 (2.50 

◦

C and 3.42 
◦

C) and MET5 (2.67 
◦

C and 3.22 
◦

C). NSD values are close to 1 at all 
stations, showing that the model is able to capture the actual tempera-
ture variability. Finally, the relative humidity predicted by the model is 
generally lower than the observed value, with negative ME up to 
− 10.64% (MET8), with the exception of MET2 (0.02%). In particular, 
air humidity is underestimated at stations located in mixed water-soil 
cells, where the model hardly captures the microclimatic conditions. 
In fact, the stations close to the shores are affected by higher humidity 
associated with evaporation from the lake surface. 

As a general pattern, the largest errors are found at the stations 
located along the northwestern shores of the lake (MET1, MET3, MET4 
and MET5). This fact may be related to the poor representation of the 
steep topography characterizing this area, due to the 2 km resolution of 
the model grid. 

Fig. 2 shows the ME of WRF for wind speed and temperature at MET1 
and MET2, evaluated on a monthly basis. MET1 (Fig. 2a) shows a clear 
positive correlation between temperature and wind speed MEs. In fact, 
overestimation (underestimation) of air temperature leads to larger 
(smaller) land-lake thermal contrasts, and, as a consequence, to stronger 
(weaker) lake breezes, especially during spring and summer. Although 
the atmospheric model is generally able to capture the diurnal cycle of 
lake-land breezes, errors can be present in the exact timing and strength 
of the circulations, depending also on the correct simulation of lake-land 
temperature contrasts. Moreover, errors present a seasonal dependence, 
with positive MEs in winter and negative in summer. Also at MET2 
(Fig. 2b), air temperature tends to be overestimated during wintertime, 
but no evident correlation with wind speed errors is found. In fact, MET2 
is located some kilometers away from the lake shore and thus it is less 
affected (than MET1) by lake breezes. 

Table 4 
Performance metrics of the hydrodynamic model in the calibration phase (APPA point, 2004–2005 run).  

ID Depth MAE ME RMSD NRMSD NSD CORR NSE 

[
◦

C] [
◦

C] [
◦

C] [-] [-] [-] [-] 

APPA 0–2 m 1.08 − 0.40 1.49 0.26 1.03 0.97 0.93  
2–20 m 0.98 − 0.25 1.32 0.29 1.08 0.96 0.91  
20–100 m 0.33 − 0.02 0.39 0.41 1.21 0.95 0.83  
100–270 m 0.21 − 0.21 0.23 0.33 0.91 0.95 0.21  

Table 5 
Performance metrics of the WRF model.  

Wind speed 

ID MAE ME RMSD NRMSD NSD 

[m s− 1] [m s− 1] [m s− 1] [-] [-] 

MET1 1.78 0.19 2.49 0.14 0.77 
MET2 1.49 − 0.24 2.05 0.13 0.93 
MET3 1.89 1.16 2.5 0.21 1.32 
MET4 1.84 1.49 2.46 0.23 1.92 
MET5 1.96 1.09 2.91 0.21 1.82 
MET6 1.33 0.96 1.84 0.22 1.9 
MET7 1.64 0.03 2.21 0.15 1.17 
MET8 1.42 1.03 1.97 0.27 1.86 

AirTemperature 
ID MAE ME RMSD NRMSD NSD  

[ 
◦

C] [ 
◦

C] [ 
◦

C] [-] [-] 

MET1 2.52 − 1.27 3.23 0.08 0.96 
MET2 2.19 − 1.11 2.95 0.06 1.01 
MET3 2.50 − 1.39 3.10 0.08 0.95 
MET4 2.67 − 1.79 3.22 0.07 0.90 
MET5 2.33 − 0.68 2.91 0.07 0.92 
MET6 1.97 − 0.81 2.50 0.06 0.98 
MET7 2.00 − 0.68 2.50 0.08 1.45 
MET8 1.90 0.03 2.41 0.05 0.98 

Relative Humidity 
ID MAE ME RMSD NRMSD NSD  

[%] [%] [%] [-] [-] 

MET1 15.01 − 8.37 19.17 0.19 0.80 
MET2 13.05 0.02 17.06 0.19 0.91 
MET3 13.30 − 7.14 17.02 0.18 0.82 
MET4 15.30 − 5.88 19.44 0.21 0.71 
MET5 13.34 − 5.44 17.16 0.19 0.82 
MET6 14.82 − 8.80 19.36 0.21 0.86 
MET7 13.79 − 8.84 17.84 0.22 1.18 
MET8 15.51 − 10.64 20.15 0.23 0.79  
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5.1.2. Hydrodynamic model 
The performance of the hydrodynamic model is evaluated by testing 

the simulated water temperature against the whole dataset (i.e., at all 
observation points and for the whole simulated period). The 

performance metrics are summarized in Table 3. Results are provided in 
Table 6 for each dataset, and are summarized in Fig. 3. 

For data available along the water column (temperature profiles), 
the simulated and observed values are averaged following Equation (1) 

Fig. 2. Temporal evolution of monthly averaged bias (ME) of wind speed (right axis) and air temperature (left axis) at a) MET1 and b) MET2. Note: gaps correspond 
to missing data in the time series of air temperature and wind speed measurements. 

Table 6 
Performance metrics of the hydrodynamic model (all points, 2004–2018 run).  

ID Depth MAE ME RMSD NRMSD NSD CORR NSE 

[
◦

C] [
◦

C] [
◦

C] [-] [-] [-] [-] 

APPA 0–2 m 1.44 0.65 2.17 0.42 1.20 0.94 0.81  
2–20 m 1.21 0.48 1.70 0.39 1.18 0.95 0.84  
20–100 m 0.53 − 0.28 0.70 0.54 1.04 0.86 0.65  
100–270 m 0.25 − 0.21 0.32 0.63 1.27 0.87 0.29 

APPA buoy 10 m 1.94 1.47 2.85 0.55 1.25 0.90 0.58 
ARPAV1 0–2 m 1.12 − 0.22 1.94 0.38 1.13 0.94 0.85  

2–20 m 1.03 0.25 1.49 0.32 1.14 0.96 0.89  
20–100 m 0.43 − 0.26 0.54 0.44 1.00 0.90 0.75  
100–330 m 0.22 − 0.20 0.30 0.49 1.14 0.90 0.55 

ARPAV2 0–2 m 1.04 − 0.57 1.73 0.30 1.09 0.96 0.90  
2–20 m 1.04 0.34 1.57 0.31 1.14 0.96 0.90  
20–70 m 0.52 − 0.19 0.74 0.51 1.03 0.87 0.72 

IMAU1 2–20 m 0.76 0.52 1.40 0.35 1.30 0.99 0.86  
20–100 m 0.34 0.05 0.45 0.35 1.16 0.96 0.88 

IMAU2 2–20 m 0.72 0.47 1.37 0.34 1.29 0.99 0.87  
20–100 m 0.32 0.05 0.41 0.31 1.23 0.98 0.90 

IMAU3 2–20 m 0.84 0.45 1.52 0.38 1.31 0.98 0.84  
20–100 m 0.35 − 0.05 0.45 0.35 1.11 0.95 0.88 

IMAU4 2–20 m 0.68 0.49 1.44 0.36 1.30 0.98 0.85  
20–100 m 0.36 − 0.10 0.47 0.33 1.05 0.95 0.88 

NIOZ 100–330m 0.04 − 0.04 0.04 1.37 2.24 0.92 − 8.18 
AVHRR1 surface 1.18 − 0.23 1.59 0.25 1.07 0.97 0.93 
AVHRR2 surface 1.13 0.18 1.52 0.27 1.09 0.97 0.93 
MODIS1 surface 1.54 0.14 2.01 0.32 1.09 0.96 0.90 
MODIS2 surface 1.65 − 0.02 2.17 0.35 1.05 0.94 0.88 
MODIS3 surface 1.64 − 0.19 2.16 0.34 1.05 0.95 0.88 
MODIS4 surface 2.51 − 0.34 3.14 0.46 0.88 0.89 0.78 
L8-1 surface 1.45 − 0.09 1.70 0.32 1.12 0.96 0.90 
L8-2 surface 1.37 − 0.07 1.86 0.33 1.08 0.95 0.89 
L8-3 surface 1.98 0.47 2.57 0.45 1.12 0.92 0.79 
L8-4 surface 1.88 1.32 2.53 0.46 1.25 0.94 0.71  
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in four depth intervals (0–2 m, 2–20 m, 20–100, 100-bottom m, as in 
Sect. 4.4), where the performance metrics are computed. We include in 
the surface layer (i.e., 0–2 m, Fig. 3a) also the comparison with the time 
series of satellite data: in this case the indices are derived according to 
Equation (2). 

In Fig. 3, the four Taylor diagrams (Taylor, 2001) display the NSD 
and the NRMSD of the simulations versus the measurements for each 
layer. Differently from the standard use of Taylor diagrams, here we use 
the numerical outputs as reference (red dots), and compare them with 
the measurements in the different locations (different markers). Since 
each observation point has its SD, the normalization of the statistical 
indices is necessary in view of the comparison. In the four diagrams, all 
the points are in the bottom right part of the plot and close to the 
reference point. This indicates that the model is well correlated with all 
datasets and well captures the temperature variability in each location 
along the water column. 

In the surface layer (Fig. 3a), the NRSMD is between 0.25 and 0.5 
almost everywhere, with the lowest values in AVHRR points. Among all 
the time series from remote sensing, AVHRR1 and AVHRR2 show the 
best agreement with model results, with MAE less than 1.2 

◦

C, while 
MAE is 2.5 

◦

C in MODIS, and between 1.3 and 2 
◦

C in Landsat-8 control 
points (see also Table 6 for the numerical values of the performance 
metrics). The worst performance is found in MODIS-4, L8-4 and APPA in 
situ point. All these points lie in the middle of the northern narrow trunk 
of the lake, and are very close to each other. Interestingly, the NSD is 
larger than 1 in APPA (1.20) and L8-4 (1.25), but smaller than 1 in 
MODIS4 (0.88). Similarly, the ME in this point switches from positive in 
APPA (0.65), APPA buoy (1.47) and L8-4 (1.32), to negative in MODIS4 
(− 0.34). 

In the epilimnion (Fig. 3b), all IMAU points show larger NSD in 

comparison with APPA point (IMAU ∼ 1.30, APPA ∼ 1.18). On the 
other hand, the APPA buoy point, providing data at 10 m below water 
surface, shows an unsatisfactory performance. In this location, the 
largest ME and RMSD are achieved (1.47 

◦

C and 2.85 
◦

C), but the cor-
relation is extremely high (0.90). Both in surface and epilimnion layers 
the NSE is above 0.8 everywhere except for APPA buoy points, where it 
is still >0.5. 

In the metalimnion (Fig. 3c), the model errors are smaller in absolute 
values, but the normalized performance indices are larger due to the 
smaller range spanned by temperature observations: in this layer, the 
largest NRMSD is at the APPA point (0.54). Correlation is everywhere 
larger than 0.90 with the exception of APPA (0.86). The NSE is smaller 
due to the limited variance of data, but the values are still acceptable, 
and the worse value is again at the APPA point (0.65, see Table 6). 

In the hypolimnion (Fig. 3d), the comparison is limited to a rather 
small number of observation points. The smallest RMSD in this layer 
(0.04 

◦

C) at the NIOZ point is linked to the largest NRMSD (1.37) and 
NSD (2.24). In APPA and ARPAV1 points, the normalized indices present 
better values (NRSD = 0.63, 0.49, NSD = 1.27, 1.14, respectively), but 
the RMSD is larger (0.32, 0.30, respectively). In general, the normalized 
indices (NRSD, NSD) provide worse results for deeper layers and shorter 
time series, due to the smaller standard deviation of the observations, 
which is the normalization factor. In fact, the EPAs datasets span a 
longer period, and the bottom temperature varied up to 1 

◦

C in the 14 
simulated years, while the NIOZ dataset contains measurements for just 
one year (2017–2018), during which the maximum temperature varia-
tion is about ~0.3 

◦

C. Hence, even if the RMSD is 10 times smaller in the 
NIOZ point (0.04 

◦

C against 0.30 
◦

C in APPA and ARPAV1), the 
normalized values and the Taylor diagram (Fig. 3d) suggest that the 
model performance is poor at that point (NRMSD = 1.37 against 0.63 

Fig. 3. Taylor diagrams comparing the Delft3D model performance against all data available in different layers: a) surface, b) epilimnion, c) metalimnion; d) hy-
polimnion. Orange dotted curves describe the range of NRSD where each model-observation comparison resides. NRSD, NSD and CORR are computed as defined in 
Table 3. The numerical values of the points are provided in Table 6. 
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and 0.49 in APPA and ARPAV1 points, respectively). On the other hand, 
the correlation (CORR) is very good in all datasets. The same reasoning 
applies to NSE, which is positive in APPA and ARPAV1 (being even 
larger than 0.5 in the latter point), with the exception of the NIOZ point, 
where the negative NSE is again due to the small range of variability of 
the time series. In all deep points, however, the RMSD is on the same 
order of magnitude as the ME, and the error can be attributed to a 
negative bias of the model near the bottom. In this regard, ME is 
generally negative everywhere in the surface and in the bottom, except 
for the surface layer in the northern sub-basin (APPA, APPA buoy, 
AVHRR2, L8-4, IMAU points). At the same time, the metalimnetic layer 
shows a positive bias in all points. 

5.2. Interannual variability 

In this section, we analyze the long-term dynamics of the tempera-
ture changes, showing also how they may be affected by specific events, 

such as a complete overturning, that produce a long-lasting signature on 
deep water temperature. To this end, we focus on observed and simu-
lated temperature changes over 14 years in two observation points: 
ARPAV1 and ARPAV2 (see Fig. 1). This analysis aims at evaluating the 
model performance in reproducing the interannual variability of the 
thermal regime in two parts of the lake displaying very different 
morphological characteristics. In fact, ARPAV1 is located in the deepest 
part of the northern trunk and reaches the depth of 337.5 m, while 
ARPAV2 lies in the southern wider basin and its depth is 69 m. In Fig. 4 
(top plots), the simulated daily temperatures at ARPAV1 (a) and 
ARPAV2 (b) are compared with the temperature monthly measured. For 
both points, the temperature is plotted at three levels. Simulated and 
measured values are calculated as the mean value over the upper 10 m 
(hereafter referred as “surface”), the deepest 10 m (“bottom”), and in a 
10 m-thick layer around the depth of 30 m (“interior”), according to 
Equation (1). The figure shows that in both points the model captures 
the interannual trend of temperature and the thermal gradients between 

Fig. 4. a-b) Evolution of temperature at the 
surface (mean over the upper 10 m), interior 
(mean between 25 and 35 m depth) and 
bottom (mean over the deepest 10 m) from 
model results (continuous lines) and obser-
vations (markers) in ARPAV1 (a) and 
ARPAV2 (b) points. c-d) Evolution of mean 
error at the surface (orange dotted line) and 
at the bottom (light blue dotted line) in the 
two points. Red dots indicate days (date 
format dd/mm/yyyy) when surface |ME| >3 
◦

C. Yellow dots highlight the dates for which 
a more detailed analysis of the atmospheric 
forcing is provided in Fig. 5.   

Fig. 5. Time series of observed and simulated wind speed at a) MET2 on June 02, 2009, b) MET2 and d) MET5 on August 06, 2017, c) MET1 on June 05, 2011 (date 
format dd/mm/yyyy). 
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the surface and the deeper layers. In ARPAV1 (Fig. 4a), the bottom 
temperature does not change significantly during single years, but the 
warming of 1 

◦

C observed from 2004 to 2018 is correctly reproduced by 
the model. The model correctly captures the deep mixing events in 2005 
and 2006 (the last events Lake Garda experienced, according to Salmaso 
et al., 2017). Likewise, the model reproduces the partial mixing 
observed in 2017, that Piccolroaz et al. (2019) attributed to a 
wind-driven deep mixing. In ARPAV2 (Fig. 4b), the model correctly 
shows that the southern part of the lake is warmer than the northern 
part, with maximum summer temperatures generally higher than at 
ARPAV1 (Fig. 4a). At the bottom, the model correctly reproduces a 
larger variability of temperature (up to 3 

◦

C in 2005) and the complete 
mixing of the whole water column occurring every year. 

The evolution of the mean model error is shown in Fig. 4 (bottom 
plots, panels c and d). For an easier reading of the plot, different y-axes 
have been used for surface (left, orange) and bottom (right, light blue) 
errors. The figures show that in both points the model error does not 
increase in time either at the surface or at the bottom. The largest surface 
errors occur during summer, and are often connected with the large 
errors at the bottom. In the deep ARPAV1 point (Fig. 4c), the error at the 
bottom is maximum (in absolute terms) between 2009 and 2013, when 
the simulated value is colder than observations. This is associated with 
an incorrect simulation of two deep mixing events, in 2009 and 2010, 
which are not observed and cause two consecutive drops in the bottom 
temperature. However, the error decreases from 2011 onwards, as the 
model does not produce false deep mixing events anymore and the 
bottom temperature rises until reaching more realistic values in 2013. In 
the shallower ARPAV2 point (Fig. 4d), the model error is larger at the 
bottom, compared to that at the ARPAV1 point (Fig. 4c): here, the 
maximum depth is shallower (69 m instead of 344 m), hence the error at 
the bottom has the order of magnitude of metalimnetic errors (see in 
Table 6). In Fig. 4c and d, red and yellow dots indicate days in which 
significant inaccuracies affect the simulated surface temperature 
(|ME| > 3 ◦C). A significant error is found on April 2005 in ARPAV2 
point (Fig. 4d), where simulated surface (bottom) temperature is 10 

◦

C 
(1 

◦

C) colder than observed. Such an error arises from the combination of 
a large underestimation of air temperature and overestimation of wind 
speed in this region of the lake (see Fig. 2b) during the previous months. 
In fact, the atmospheric model has a mean error on air temperature of 
− 4.56 

◦

C in February and − 5.61 
◦

C in March 2005, which drives the 
fictitious cooling of the water column detected in April. A negative error 
is found in ARPAV1 (Fig. 4 c) as well, but the absolute value is much 
smaller than in ARPAV2 (< 2.5 ◦ C at the surface, < 0.5 ◦ C at the bot-
tom), due to the larger local depth. 

Similarly, the other days displaying large errors coincide with pe-
riods of wind forcing significantly over/underestimated by the atmo-
spheric model. In Fig. 5, the comparison between the simulated and 
observed wind speed at hourly scale is provided for some of these days 
(indicated as yellow dots in the previous figures). In all reported cases, it 
can be seen that the atmospheric model provides a good representation 
of the observed values, except for a limited time slot. More in detail, the 
WRF model significantly overestimates wind speed at MET2 in the 
central hours of June 02, 2009 (Fig. 5a), producing an excessive cooling 
at both ARPAV points on June 03, 2009. On the contrary, an increase of 
wind speed due to the passage of a cold front is not reproduced at MET2 
and MET5 in the evening of August 06, 2017 (Fig. 5b and d, respec-
tively), leading to the underestimation of wind-driven cooling on August 
08, 2017. A similar explanation holds for the positive mean error 
detected in ARPAV1 on June 07, 2011: observations at MET1 on June 
05, 2011 show a sudden increase of wind speed at 18 UTC+1, due to a 
local thunderstorm, which is not captured by the atmospheric model 
(Fig. 5c). 

5.3. Seasonal cycle 

The seasonal variability of water temperature in the lake may be 
characterized in a simple and effective scheme containing most of the 
relevant information. Fig. 6 shows the temperature variation along the 
water column at ARPAV1 for each month of the year, as seen from the 
model and from the observations. The simulated profiles are obtained by 
computing the statistics of the simulation output over the whole simu-
lated period. The distribution of simulated temperature is indicated with 

Fig. 6. Comparison between monthly averaged water temperature profiles over 
2004–2018 among model results (orange box plots) and observations (grey 
dots) in the reference point ARPAV1. The boxes depict the median, the 25th and 
75th percentiles of the monthly variation of temperature from the model re-
sults. The whiskers extend to the minimum and maximum data points not 
considering outliers, which are not plotted. Observations are plotted as single 
scattered profiles. 
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boxplots (excluding outliers, for the sake of clarity). Single water tem-
perature profiles from observations are plotted as grey dots. 

The figure shows four characteristic periods. From February to 
March, the lake is nearly unstratified, with temperatures ranging in an 
interval of less than 1 

◦

C throughout the water column. April, May and 
June are characterized by the developing stratification, and temperature 
experiences a great variability (surface temperatures span a range of 10 
◦

C in June). The largest surface-bottom difference is reached in the 
summer months, from July to September, when it ranges between 10 

◦

C 
and 20 

◦

C, and surface layers experience a similar range of variability 
(15 

◦

C). From October to January, the autumn-early winter destratifi-
cation typically occurs, and the range of surface variability decreases 
from 5 

◦

C (October) to 2 
◦

C (January). 
The model correctly reproduces the range of variation of the tem-

perature in each month and along the whole water column. Exceptions 
are found in summer months (June, July and August), when few epi-
sodes of very cold temperatures are not captured by the model. The 
temperatures observed in those episodes lie beyond the normal range of 
variability, and the dates correspond to extremely windy days. These are 
not properly reproduced by the atmospheric model (see Fig. 5), inducing 
subsequent errors in the hydrodynamic model results (see Fig. 4c for the 

details on the dates). 

5.4. From monthly to sub-daily dynamics 

In this section, we refer to the data at hourly scale available for the 
APPA buoy (surface) and from the NIOZ thermistor chain (deep water), 
and compare observed and simulated temperature in the epilimnion and 
hypolimnion, using a wavelet time-frequency analysis. At the same time, 
we also analyze observed and simulated wind speed at the nearest 
weather stations, using the same approach. Fig. 7 presents the results for 
the near surface dynamics from 2013 to 2018. The figure compares the 
wavelet power spectra (WPS) of measured (a) and simulated (b) wind 
velocity at MET1 station, and the epilimnetic water temperature at 10 m 
depth at APPA buoy station (d,e). Additionally, the global wavelet 
spectrum (GWS) for both variables (wind, c, and temperature, f) displays 
the time-averaged relevant energetic levels from observed and simu-
lated time frequencies. 

The figure shows that the WPS of the model results is fully coherent 
with data from observations, both for the wind and for the water tem-
perature. WPS coherence between observed and simulated wind in-
dicates that the model captures the most important weather events. 

Fig. 7. Wavelet analysis of (top plots) wind velocity and (bottom plots) epilimnetic temperature. Left plots: wavelet power spectrum (WPS) of a) wind observations at 
MET1 weather station; b) wind simulated by WRF at the corresponding model cell; d) water temperature measured by APPA buoy thermistor at 10 m depth; e) water 
temperature simulated by Delft3D at APPA buoy point at 10 m depth. Right plots: global wavelet spectrum (GWS) computed from the previous WPS on (c) wind and 
(f) epilimnetic water temperature signal. 
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More energetic areas (orange to yellow) correspond to the summertime 
period, while less energetic periods (blue to purple) are found in 
wintertime. The wind signal (Fig. 7a and b) shows that much more en-
ergy is associated to semi-diurnal and diurnal breezes in summer (as 
described by Giovannini et al., 2017). On the contrary, the signal is less 
intense during wintertime, when synoptic events are responsible for the 
energy peaks at longer time scales (some days to one week). At a global 
scale, the main energetic levels are at 12 and 24 h (Fig. 7c). By 
comparing the WPS of the temperature signal (Fig. 7d and e), we can see 
how these weather events impact the lake state, involving multiple time 
scales. The epilimnetic temperature spectrum (Fig. 7d and e) resembles 
the wind signal at the semi-diurnal to diurnal periodicity in all seasons. 
During summertime, when the lake is strongly stratified, the energy 
input from the wind cascades from low-frequency internal waves at 
basin scale to high-frequency waves (Preusse et al., 2010). Thus wind 
excites a more heterogeneous wave field, whose dominant periodicities 
range from hours to months, and can be clearly seen at a global scale in 
the GWS (Fig. 7f). 

In Fig. 8, the dynamics of the last simulated years (2017–2018) are 
presented at the NIOZ point. The figure compares the WPS of measured 
(a) and simulated (b) wind velocity at MET5 station, and hypolimnetic 
water temperature at 187 m depth at NIOZ station (d,e). Again, the GWS 
of wind (c) and deep water temperature (f) summarize the main 

energetic levels. In order to better identify the seasonal alternation, the 
GWS for both variables are represented differently between spring to 
autumn integrated spectrum (stratified period, from May to October, 
continuous lines) and winter spectrum (nearly unstratified period from 
November to April, dashed lines). Measured (a) and simulated (b) wind 
velocities display dominant energetic levels at semi-diurnal and diurnal 
frequencies (mainly in the stratified period, see subplot c) and few 
intense events of daily to weekly periodicity (e.g., November 2017 and 
March–April 2018). The wavelet analysis confirms that the atmospheric 
model missed the intense wind event occurred in August 2017 (as 
already seen in Sect. 5.2, Fig. 5b,d). 

The signature of semi-diurnal, daily and synoptic winds can be found 
in the observed (d) and simulated (e) deep temperature signal as well. 
The hydrodynamic model reproduces predominant semi-diurnal peri-
odicity during the stratified period (see the GWS in subplot e), while 
during winter periodicities around 5–6 days are more energetic. These 
results are consistent with the observations of van Haren et al. (2020). 
The global power spectra (Fig. 8c,f) highlight that both atmospheric and 
hydrodynamic model overestimate the energy of wind and deep water 
temperature signal at all energetic levels, especially at the longer scales 
in winter. 

Fig. 8. Wavelet analysis of (top plots) wind velocity and (bottom plots) hypolimnetic temperature. Left plots: wavelet power spectrum (WPS) of a) wind observations 
at MET5 weather station; b) wind simulated by WRF at the corresponding model cell; d) water temperature measured by NIOZ thermistor at 187 m depth; e) water 
temperature simulated by Delft3D at NIOZ point at 187 m depth. Right plots: global wavelet spectrum (GWS) computed from the previous WPS on (c) wind and (f) 
hypolimnetic water temperature signal. 
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5.5. Spatial gradients 

In the previous sections, the performance of the hydrodynamic 
model in different points of the lake is presented (sections 5.1.2 and 5.2). 
While it is locally acceptable in most of the in situ locations (see 
Table 6), difficulties arise when comparing the model performance (i.e., 
the numerical values of the metrics) in different regions of the lake. In 
fact, the comparison of statistical indexes is hindered by the different 
sampling frequencies and lengths of the time series. In order to over-
come this issue, in this section we discuss the model performance in 
reproducing the spatial variation of water temperature on single dates. 

In Fig. 9 the water temperature field at different depths is shown for 
day July 4, 2017 at 10 UTC, when the largest number of (nearly) 
simultaneous observations is available. At the surface (Fig. 9a), water 
temperature spans a range of 3 

◦

C, from 23 
◦

C to 26 
◦

C, with increasing 
temperatures from north-west to south-east. Observations at the surface 
from Landsat-8 dataset (here reported in the control points listed in 
Table 1) confirm this gradient, despite a positive bias of approximately 
1 

◦

C exists between the simulated and remotely sensed water tempera-
ture (see RMSE and ME values reported in Fig. 10l and 11l and the 
corresponding comment below). At 12 m depth (Fig. 9b), a wider range 
is found, with temperatures ranging from 20 

◦

C to 25 
◦

C. The west-east 
gradient observed at the surface is inverted at this depth, possibly due to 

a tilt of the metalimnion, with colder temperatures being now along the 
eastern shore. In the southern part, the existence of a gyre structure is 
evidenced by the presence of cold water at the center of the sub-basin, 
surrounded by warmer water. In the whole lake the simulated water 
temperature field shows a good agreement with measurements in APPA, 
ARPAV1 and ARPAV2 stations. Moving deeper (Fig. 9c,d,e,f), the water 
temperature sharply decreases and the spatial variability of water tem-
perature reduces to 1 

◦

C at 50 m (c), 0.3 
◦

C at 100 m (d) and less than 
0.05 

◦

C below 200 m (e,f). At 310 m (f), water temperature is nearly 
homogeneous and the simulated value (~ 8.735 

◦

C) slightly over-
estimates the observations at ARPAV1 and NIOZ (ME 0.035 

◦

C). In all 
layers, and for the selected date, the model correctly simulates both the 
horizontal and vertical variation of temperature at all available stations. 

In Figs. 10 and 11 we compare the simulated surface water tem-
perature with remote sensing LSWT data from Landsat-8 full maps (see 
Table 1 for the technical details of the sensor and the time availability of 
data). The consistency of such a comparison is ensured by the fact that 
each pixel of the satellite LSWT maps is associated to the same time and 
to the same sampling method. Fig. 10 shows the absolute value of the 
centered (unbiased, hence removing the spatial mean) anomaly ΔcT 
between simulated and observed LSWT (see Equation (3), Sect. 4.3). In 
the top left corner of each subplot, we report the RMSD and ME 
computed for the single maps according to Table 3, without removing 

Fig. 9. Spatial variation of simulated (color plot) and observed (filled circles with white stroke) water temperature on July 4, 2017 at 10 UTC. Each subplot reports 
the simulated temperature field at a fixed depth below water surface and the measurements available at that depth (see Table 1). 
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the spatial mean, thus providing the order of magnitude of the error over 
the whole lake surface. In most of the investigated dates, the RMSD is 
very similar to the ME. This suggests that most of the error is associated 
with the bias between skin temperature (retrieved from satellite imag-
ery) and bulk temperature (simulated by the hydrodynamic model), 
which can reach up to few 

◦

C degrees, depending on the weather con-
ditions, especially during daytime (Wilson et al., 2013; Baracchini et al., 
2020a). 

For this reason, the advantage of introducing the unbiased anomaly 
ΔcT index is easily understood. Indeed, by getting rid of the biases of 
both model and satellite data, the spatial distribution of the difference 
between the two can be visualized in an efficient way. 

In most maps, |ΔcT| <1 
◦

C over the whole lake surface (e.g., 
Fig. 10a). Differently, the largest ΔcT (up to 3 

◦

C) is found in those days 
when also significant differences between ME and RMSD occur (panels 
c–d, g, j). The largest differences between model results and satellite 
data are localized in the northern trunk and during the summer-early 
autumn period (panels b–d, g, j, m), and often along the eastern shore 
(panels b–d, g, k, m, o, r). In the southern basin, larger errors can occur 
again along the eastern shore (panels a–d,f-g, j, m, q), while patterns 
with smaller errors are frequent in the middle of the sub-basin (panels a, 
k, m, q). 

A similar comparison, but taking into account the sign of the unbi-
ased anomaly, is provided in Fig. 11. By comparing the areas of large 
anomalies from the previous figure with the sign of the anomalies in the 
present figure, a clear pattern can be seen. In the northern trunk, large 
positive anomalies are caused by warmer simulated temperatures 
(panels b–d, f-h, j-n). In the southern basin, the negative anomalies along 
the eastern shore are due to colder model temperatures (panels a–d, f-g, 
j, m, q). In the middle of the sub-basin, the sign of the anomaly oscillates 
between negative (panels a, k-m) and positive (panels b–c, f, q-r). 

These anomalies can be related to transport processes that are not 
well captured by the model and for which the timing can be crucial. In 
fact, the two areas showing the largest mismatch patches are found to be 
affected by specific current patterns in previous studies. Gyre circula-
tions have been observed in the middle of both southern and northern 
basins by Amadori et al. (2018, 2020). Moreover, in the northern trunk, 
Piccolroaz et al. (2019) observed and simulated up/downwelling along 
the shores due to intense and long lasting wind events. The latter pro-
cesses could actually be responsible for the mismatch between Landsat 
images (colder) and simulated (warmer) surface temperature along the 
eastern shore, especially during late morning (Landsat acquisition time 
is 9:50 UTC). In fact, the model might have missed a cold upwelling 
caused by a local wind named ‘Peler’, which regularly blows from 

Fig. 10. Absolute unbiased temperature anomaly between simulated and Landsat-8 LSWT computed as in Eq. (3) from all available complete satellite maps. Each 
subplot reports the date (date format dd/mm/yyyy), the RMSD and the ME (bias). The two indices are computed as in Table 3, with i indicating each pixel and N the 
total number of pixels. 

M. Amadori et al.                                                                                                                                                                                                                               



Environmental Modelling and Software 139 (2021) 105017

17

northeast starting at late night, and persists until late morning. In this 
regard, the absence of current measurements or satellite maps at 
different times does not allow us to examine this bias in detail. 

6. Discussion 

The main goal of this work is to assess the capabilities of the Delft3D 
lake model, driven by WRF simulated outputs, to reproduce the lake 
thermal features over different time and spatial scales, and to evaluate 
how the atmospheric model results affect the lake model performance. 
As mentioned in Sect. 4.2, not all the parameters can be effectively 
tuned, as we calibrate the model on temperature data solely. For these 
parameters, either the default value is adopted (Chzy coefficient, hori-
zontal turbulence terms) or formulations available from the literature 
are used (wind drag coefficient). 

The performance of the numerical simulations is evaluated with 
typical statistical metrics (Sect. 5.1), whose values are consistent with 
previous results available in the literature, both for the model we use, 
Delft3D (e.g., Wahl and Peeters, 2014; Soulignac et al., 2017; Dis-
sanayake et al., 2019), and for similar models (e.g., Hodges et al., 2000; 
Rueda and Schladow, 2003; Valerio et al., 2017). Differently from the 

mentioned experiences, however, we evaluate not only the hydrody-
namic model, but also the atmospheric model used to assign the surface 
boundary conditions. Additionally, both models are tested on different 
spatial and temporal scales. 

The analysis of the interannual variability (Sect. 5.2) highlights that 
the hydrodynamic model correctly predicts the differences in the ther-
mal regime of the two sub-basins of Lake Garda, i.e., oligomixis in the 
northern part, and monomixis in the southern part. However, the model 
reproduces two false complete overturns in the deepest part of the lake. 
Similar results are also found by previous experiences in large and deep 
Alpine lakes, and are attributed to excessive bottom mixing, either in 1D 
(e.g. Schwefel et al., 2016) or 3D models (e.g. Råman Vinnå et al., 2017). 
For the case of the deep Lake Garda, as in many other oligomictic lakes 
(Imboden et al., 1987), it is demonstrated that deep mixing is tradi-
tionally buoyancy-driven (Salmaso et al., 2017), but that intense and 
long-lasting wind events can occasionally cause the complete or partial 
entrainment of the water column, causing deep ventilation (Piccolroaz 
et al., 2019). Hence, a significant role is played by the atmospheric 
forcing (both air temperature and wind), which has to be captured 
properly in order not to miss deep mixing events or reproduce false 
positives. In our case, the interannual trend of the WRF performance at 

Fig. 11. The same plot as in Fig. 10, but keeping the sign of the unbiased temperature anomaly.  
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the northern station MET1 (Fig. 2a) shows a positive ME on wind and air 
temperature during wintertime. However, in some years an over-
estimation of wind speed of 1 or 2 m s− 1 coincides with underestimated 
air temperatures (e.g., February 2009 and 2010, see Fig. 2), leading to 
complete overturns in the nearly unstratified period (late winter to early 
spring, see Fig. 4a). This issue can be overcome through data assimila-
tion (Chen et al., 2019; Baracchini et al., 2020a) or restart procedures 
(Bouffard et al., 2018), forcing mixing to be well reproduced. In this 
work, where none of these techniques are applied and a single long 
simulation is performed, the results achieved in the deep water region 
are still acceptable, as such errors occurred only in two out of 14 
simulated years. 

In Sect. 5.3, we show that the lake model satisfactorily captures the 
seasonal variations of water temperature along the vertical column. 
From this analysis, exceptional cooling events are easily identified. 
During such exceptional events, the hydrodynamic model provides the 
largest errors, especially in the northern region and on those days when 
the wind forcing is wrongly predicted by the atmospheric model. In this 
part of the lake, the resolution of the atmospheric model is not 
completely adequate to capture local-scale circulations in such a com-
plex topography, since the grid size is 2 km over an average width of 4 
km in the northern trunk. Limitations due to grid spacing are not the 
only source of error in the atmospheric model, since inaccuracies can 
also come for example from a misrepresentation of large-scale forcing 
(as in the case of the cold front on August 06, 2017, see Fig. 5). However, 
for the particular case of Lake Garda, where the climatology is mainly 
determined by local scale processes, due to the complex orography 
surrounding the lake, we believe that the misrepresentation of fine-scale 
details is the main cause of model errors, as highlighted in WRF similar 
applications over complex terrain (see e.g., Carvalho et al., 2012; 
Mughal et al., 2017). In this regard, it is well known that in very complex 
terrain sub-kilometer resolution should be adopted to reproduce 
appropriately local-scale circulations (Giovannini et al., 2014a; Le Roux 
et al., 2018; Schmidli et al., 2018). This resolution is not feasible for the 
present application, due to the high computational costs implied by 
simulating 14 years. Relevant inaccuracies occasionally occur also in the 
southern part of the lake. Here, the atmospheric model struggles in 
reproducing local-scale phenomena (e.g., again the thunderstorm on 
August 06, 2017, see Fig. 5) and occasionally causes large errors in the 
simulation of wind speed and/or air temperature over localized areas 
near the shore. However, it is likely that errors are lower over the lake’s 
surface, where the spatial heterogeneity of the meteorological fields is 
expected to be less significant. Unfortunately, no long-term meteoro-
logical measurements are available over the water. In this regard, in the 
recent application on Lake Garda reported by Piccolroaz et al. (2019), 
the authors warned that wind speed above the lake is not well described 
by the measurements from the nearest ground stations. They found that 
the wind speed above the lake is on average 1.6 times stronger than land 
measurements at MET3 and that WRF results are representative of the 
lake forcing conditions in the investigated periods. It is not redundant to 
stress that the spatial variability of the wind forcing is crucial for an 
appropriate representation of the basin-scale circulation and transport 
patterns, as already demonstrated for Lake Garda by Amadori et al. 
(2018), and by e.g., Strub and Powell (1986), Lemmin and D’Adamo 
(1996) and Laval et al. (2005) for other lakes. 

Going down to the shorter time scales (Sect. 5.4), the wavelet anal-
ysis of the higher time resolution data at MET1, MET5, APPA buoy and 
NIOZ points gives satisfactory results for both models. The analysis 
shows that both models capture the relevant time scales associated to 
wind velocity and temperature fluctuations (at the surface and at the 
bottom). In the series of epilimnetic water temperature, the predomi-
nant semi-diurnal and diurnal periodicity is perfectly reproduced by 
both atmospheric and hydrodynamic models. In the deep NIOZ point 
and the corresponding weather station MET5, the two models reproduce 
the main energetic levels, in good agreement with the observations by 
van Haren et al. (2020) at NIOZ point. However, both models 

overestimate the energy associated to each time scale. It is reasonable 
that the excessive energy predicted by WRF in MET5 is transferred to the 
hydrodynamic model. However, the error of the latter can also be 
magnified by the k-ε model implemented in Delft3D, which does not 
take into account wave breaking. Hence, the turbulence model might 
miss the dissipation associated with this process, eventually over-
estimating the energy associated with internal waves. 

From Sect. 5.2 to Sect. 5.4, several time scales are considered, but 
also the spatial distribution of data. We see that the model performance 
is sensitive not only to the length of the series, but also to the geographic 
factors characterizing different points. In this regard, the case of the 
northern trunk of the lake is emblematic, as the worst performance is 
found in this area. We have already stressed that the resolution of the 
atmospheric model is too large to capture the sharp topographical var-
iations of that region. However, its complexity also makes not only 
modeling, but also in situ measurements and remote sensing difficult to 
interpret. In this area residual effects from the adjacent land might affect 
the retrieval of LSWT from satellites in AVHRR, MODIS and Landsat-8 
control points. In this regard, Pareeth et al. (2016) also observed that 
mountains have a shadowing effect on the remotely sensed LSWT in this 
part of the lake, which is likely to affect also in situ measurements, in a 
way that depends on the time of the day at which images are taken. The 
evaluation of the simulated water temperature fields against in situ and 
remotely sensed data (Sect. 5.5) provides useful insights on the model’s 
capability of reproducing the spatial variations on single dates. The 
comparison of LSWT maps retrieved from satellite and those computed 
by the model provides the general picture that the model tends to 
overestimate LSWT in the northern part of the lake and to underestimate 
it in the south-eastern basin. If the issues related with the atmospheric 
model uncertainty are put aside for a moment, it is useful to consider 
that the two sub-basins are extremely different: the northern one is deep 
and narrow, with steep shores going sharply down to the bottom, while 
the south-eastern one is wide and shallow with a more uniform ba-
thymetry. The way the lake exchanges heat through its surface is 
significantly different between the two sub-basins, with different ther-
mal (and mixing) regimes, due to the lake heterogeneous bathymetry, 
shape and surrounding topography. Hence, the calibration parameters 
can produce opposite effects: not enough heat loss in the deep part 
(model too warm at the surface) and too much in the shallow part 
(model too cold). While currently available hydrodynamic models allow 
for various types of turbulence parameterization, from assigned eddy 
coefficients to more or less complex turbulence models (e.g., k-ε as in our 
case, or more recent approaches like LES, as proposed by Santo et al., 
2017), one single parameterization of the heat fluxes across the lake 
surface is normally adopted for the whole domain. A more sophisticated 
parameterization of mixing on both sides (atmosphere and water) 
should be developed for applications on multi-basin lakes, in the same 
way as time-varying parameters are now obtained through data assim-
ilation. This issue offers a lead for further research efforts in the future. 
Finally, the spatial distribution of anomalies of LSWT obtained from 
remote sensing compared to that from numerical modeling is also 
exploited to infer whether the hydrodynamic model is able to capture 
the surface transport dynamics in the lake. In such an analysis, we note 
some discrepancies between the two, but it is not easy to attribute them 
to malfunctioning of the model or misinterpretation of satellite data. 
Here, the timing for the comparison is essential: for instance, upwelling 
phenomena can be episodic and rapidly evanescent and a few hours of 
delay may make a large difference. If more maps at a higher time res-
olution are available, the transport patterns could be reconstructed 
(Steissberg et al., 2005) providing a precious way to verify also the flow 
field, at least at the lake surface. In this regard, the availability of 
additional remotely sensed measurements will definitely represent a key 
factor to improve this kind of analyses. 
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7. Conclusions 

In this work, we evaluate the performance of a 3D lake model 
(Delft3D) forced by an atmospheric model (WRF) at multiple scales. We 
compare the results of a single long-term (14 years) simulation, with a 
number of different datasets of measurements from ground weather 
stations, buoys, thermistor chains and satellite imagery. While it is 
obvious that testing the numerical model against observations is the 
necessary step for any reliable application, in this work we critically 
analyze the model’s performance at multiple scales with diverse types of 
available data. 

Our focus is on the water temperature field, as water flow mea-
surements are not always available in standard monitoring schemes. 
While a full validation of a 3D model would require to consider also 
other variables (e.g., water level, flow velocity, and turbulence quanti-
ties) here we cope with the typical scarcity of this type of data and 
extracted all possible information from water temperature data (typi-
cally available from routine monitoring of lakes) at different spatial and 
temporal scales. Even though some parameters are not calibrated, and 
the hydrodynamic quantities not verified directly, the 3D field of water 
temperature is satisfactorily reproduced at all investigated spatial and 
temporal scales. In fact, the model correctly reproduces the interannual 
variability of temperature along the water column, the main seasonal 
trends, the daily and subdaily internal variation and the main spatial 
patterns. 

The approach we adopt allows highlighting how different scales 
interact, eventually affecting the results. On the one hand, we are able to 
interpret the hydrodynamic model flaws on single days, by observing the 
performance of the atmospheric model in the preceding months/years 
(e.g., in 2004 and 2005). On the other hand, we highlight how single 
events can affect the model’s performance for many years afterwards (e. 
g., the error at the bottom from 2009 to 2013 caused by the wrong 
prediction of deep mixing event in 2009). When inaccuracies are found, 
the multi-purpose approach also allows for tracing back to error source 
either in the atmospheric model (interannual to daily scale) or in the 
model resolution (in the northern trunk region), or in the flow field 
uncertainty (largest patches of mismatch between satellite and model 
maps). In this regard, our results suggest that a better performance 
might be achieved by improving the resolution of the atmospheric 
model, ideally assimilating meteorological data from stations located 
within the lake. Progress in this direction is expected from ongoing 
research efforts, aiming at improving our capabilities of observing and 
simulating atmospheric transport and exchange process over complex 
terrain (Serafin et al., 2018). Our suggestion is to adopt such approach 
when a model is intended to be applied at an operational level, as it helps 
identifying the model strengths and weaknesses, and leads the way for 
further improvements. 
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