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Tracking deep‑sea internal wave 
propagation with a differential 
pressure gauge array
Chu‑Fang Yang1,2,3*, Wu‑Cheng Chi2, Hans van Haren4, Ching‑Ren Lin2 & Ban‑Yuan Kuo2

Temperature is used to trace ocean density variations, and reveals internal waves and turbulent 
motions in the deep ocean, called ‘internal motions.’ Ambient temperature detected by geophysical 
differential pressure gauges (DPGs) may provide year‑long, complementary observations. Here, 
we use data from four DPGs fixed on the ocean bottom and a high‑resolution temperature sensor 
(T‑sensor) 13 m above the seafloor as a square‑kilometer array deployed offshore ~ 50 km east of 
Taiwan facing the open Pacific Ocean to examine the impact of temperature on DPG signals related to 
internal motions. The DPG signals correlate with T‑sensor temperature variations between 0.002 and 
0.1 mHz, but have time shifts partially caused by slow thermal conduction from the ambient seafloor 
to the DPG chamber and partially by internal motion propagation time across the array. Applying 
beamforming‑frequency‑wavenumber analysis and linear regression to the arrayed T‑sensor and DPG 
data, we estimate the propagating slowness of the internal motions to be between 0.5 and 7.4 s  m−1 
from the northwest and northeast quadrants of the array. The thermal relaxation time of the DPGs is 
within  103–104 s. This work shows that a systematic scan of DPG data at frequencies < 0.1 mHz may 
help shed light on patterns of internal wave propagation in the deep ocean, especially in multi‑scale 
arrays.

Temperature is a crucial parameter to trace density variations in the ocean. Dynamical ocean internal motions 
and vertical turbulent water mixing are closely related to density distributions. However, density distributions 
are difficult to measure directly. As ocean density variations are a function of temperature, salinity, and pres-
sure, these measurable parameters could be used to track  density1. Temperature and pressure are relatively easily 
observed, but until now density has been unobservable and salinity can only be indirectly obtained by combin-
ing measurements of temperature and conductivity and to a lesser extent pressure. Combining measurements 
from different instruments with different characteristics sometimes deteriorates the precision of the quantity 
to be observed. To convert temperature to density, shipborne conductivity-temperature-depth profile measure-
ments are used to build the local temperature-density relationship. Thus, temperature observations can be used 
as a tracer for density variations in the ocean at known pressures if the relationship is tight, e.g., van Haren and 
 Gostiaux2. Compared with near-surface ocean waters, deep-ocean waters demonstrate relatively small tem-
perature variations < 0.5 °C. However, slight changes of the temperature in the deep ocean may indicate internal 
waves and turbulent motions that may help to transport energy, suspended matter and nutrition for deep-ocean 
life, e.g.,  Thorpe3.

Internal waves, which propagate three-dimensionally in the ocean’s stable vertical density stratifications, 
induce temperature fluctuations in the deep-sea environment. These waves are ubiquitous in the ocean. Depend-
ing on their frequency and the rate of stratification, they can freely propagate, reflect, and scatter off seafloor 
 topography4. The periods of internal waves range from several minutes, depending on the stratification, to a 
few days, depending on the  latitude5. From short to long periods, internal waves can be induced by buoyancy 
oscillations, tides, and inertia-related geostrophic adjustments of passing atmospheric disturbances and Earth’s 
rotation. Among them, horizontal wavelengths of the longest-period inertial internal waves are observed O 
(10 km)6, related to the strength of the density  stratification7.

When moored on the seafloor, temperature sensors (T-sensors) help to observe long-term internal motions 
in deep-sea environments. The time-series profiles from a moored vertical T-sensor string (T-string) are able 
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to image vertical structures of the internal motions and to estimate the vertically spatial scale and energy of 
turbulent mixing induced by breaking of internal waves, e.g., van  Haren8.

In geophysical research, seafloor pressure measurements from absolute and differential gauges have been 
applied to study seafloor  geodesy9,10, tsunami  propagation11,12, earthquake  seismology13,14, and ocean surface 
infragravity  waves15. The Cox-Webb differential pressure gauge (DPG)16 is a high-sensitivity pressure sensor 
usually integrated with an ocean bottom seismograph (OBS) for studying seafloor seismology. For example, 
seafloor compliance can be derived using data from co-installed DPGs and OBSs on the same frame to quantify 
how much seafloor ground displacement is induced by ocean surface waves, allowing us to study the rigidity of 
subsurface  sediments17–20.

Despite wide applications of DPGs in seismology, amplitudes of the recorded signals are sensitive to the 
instrument response function that converts raw digital counts to physical units of pressure. Doran et al.21 found 
that the local environment of the deployment sites leads to variations in the response function, and in-situ cali-
bration of DPGs helps to obtain accurate response information, which performs better than a general response 
function. However, this may limit the utility of the DPG data due to inaccurate quantification of pressure. Why 
an in-situ calibration is needed is an active research topic. In addition, pressure measurements of silicon oil-
filled DPG sensors at frequencies below 3 mHz are sensitive to temperature  changes16. The thermal effects from 
pressure-driven adiabatic processes and external temperature-induced conductive heat flow through the chamber 
walls can influence long-period DPG signals > 300  s16. There are several useful designs to avoid temperature 
effects in high-frequency pressure  measurements16. An oil-filled acrylic plastic jacket surrounding the reference 
chamber contributes to thermal insulation for pressure signals at frequencies > 3 mHz, and a slow leak releases 
excessive pressure from the reference chamber about every 60 s to avoid large non-ambient-pressure-induced 
fluctuations in the chamber. Thus signals at > 3 mHz, typical for most earthquake seismological studies, e.g., 
An et al.22, are less affected by temperature. However, the impact of seafloor ambient temperature on field DPG 
signals at < 3 mHz has not been systematically documented so far.

In this paper, we use data from a DPG array with a 1 × 1 km footprint, in addition to high-resolution T-sensor 
data from a mooring, to study DPG measurements of temperature fluctuations induced by deep-sea inter-
nal waves. The multi-instrument array was deployed on slopes at depths between 3000 and 3200 m offshore 
~ 50 km east of Taiwan (Fig. 1) where internal waves are expected from the open Pacific Ocean. The array has 
four OBSs with horizontal station spacing of about 0.5–1 km and a single 200-m vertical T-string mooring with 
101 T-sensors and a Nortek AquaDopp acoustic current meter with a pressure sensor. The concurrent obser-
vational period of the datasets was between September 1, 2017 and April 20, 2018. Each OBS has a Cox-Webb 
DPG. The DPGs (P1, P2, P3, and P4) are named sequentially from nearest to farthest from the T-string. The 
local inertial period of the deployment site at φ = 22.6° is about f = 2Ω sin φ ≈ 5.6 ×  10–5  s−1 ≈ 0.77 cpd (cycle per 
day), approximately 0.0089 mHz. We analyzed the DPG variations at < 3 mHz with the data from a T-sensor at 
3131 m to see how ambient temperature affects DPG waveforms, and to document temperature-induced varia-
tions from DPG records. We used DPG-derived ‘temperature signals’ in this spatially dense array to study events 
with significant internal motions, and to calculate the propagation speed and direction of the internal waves 

Figure 1.  Location of the experimental site. A multi-instrument array within a 1 × 1 km footprint (magenta 
cross in insert) was deployed on continental slopes offshore eastern Taiwan. The array has a 200-m long vertical 
thermistor string (T-string, yellow star) with a Nortek AquaDopp acoustic current meter at 2936 m, and four 
Cox-Webb differential pressure gauges (DPG P1, P2, P3 and P4, red dots) attached to four broadband ocean 
bottom seismometers. Dashed red lines and numbers below the red dot show the shortest horizontal distances 
(with error ± 10 m) from the T-string to each DPG. Bathymetric maps with depths in [m] were made using 
the Matplotlib graphic tool (version 2.1.2; URL: matplotlib.org) for Python using 100 × 100 m resolution 
interpolated bathymetry data from a multibeam survey.
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using beamforming-frequency-wavenumber (beamforming-FK)  analysis23,24, henceforth ‘FK-analysis’ in short, 
and a linear regression method. In addition, the thermal relaxation time, the time for thermal conduction from 
a temperature pulse in the ambient environment to propagate to the DPG reference chamber, is estimated by 
temperature time delays between the T-sensor and four DPGs.

Results
Temperature‑induced DPG variations. The DPG variations between 0.002 and 0.1 mHz correlate well 
with T-sensor data, but do not correlate with the pressure data from the current meter. During the entire concur-
rent deployment period of all instruments, the pressure sensor on the current meter recorded strong diurnal and 
semidiurnal motions induced by ocean surface waves (Fig. 2a). The T-sensor and DPG P1 observed significant 
inertial and semidiurnal motions, and these two datasets show coherence > 0.1 (95% significance level) between 
0.002 and 0.1 mHz (Fig. 2b). This frequency band includes periods of internal motions at the local inertial (f), 
the diurnal  (K1), the double inertial (2f), and the semidiurnal  (M2) frequencies, as well as the local buoyancy 
frequency N ≈ 0.1   mHz25. Although the bandwidth for coherence > 0.1 decreases as the DPG is further away 
from the T-sensor (Fig. S1), the coherence relations between the T-sensor and different DPGs are still similar 
at frequencies between 0.002 and 0.1 mHz (Fig. 2 and Fig. S1). The relations give a robust result that the long-
period DPG variations are related to temperature variations induced by the internal motions.

To examine the temperature-related data recorded by DPGs in the time domain, we use the significant 
coherence frequency band (0.002–0.1 mHz, henceforth ‘long period’ for this bandwidth) to filter the time series 
of the T-sensor and the DPG data for the following analysis. The DPGs are sensitive to the time derivative of 
temperature field for periods > 300  s16; thus, we integrate the long-period DPG variations for comparison with 
the temperature data. During a period of strong inertial internal motions with temperature variations of about 
0.1 °C, the integrated long-period DPG variations correlate well with temperature variations (Fig. 3b), but 
show a time shift of a few hours with the T-sensor variations. Henceforth ‘DPG-T’ is informally defined for 
the temperature-related integrated DPG data. The pressure data from the current meter show clear diurnal and 
semidiurnal variations (Fig. 3a) that are not found in the DPG-T time series. The pressure variations O  (104 Pa) 
related to ocean surface tides are generally much greater than the pressure induced by internal tidal waves O 
 (102 Pa) in the deep ocean. However, surface tidal motions were barely visible in the DPG-T data. The differ-
ent time/phase shifts among the DPGs also demonstrate that the DPG variations were not generated by ocean 
surface waves. The free propagating surface tidal waves, which have larger horizontal scales (O  (103 km)) and 
higher phase speed (O  (102 m  s−1)), could arrive the DPG stations almost in-phase. Thus, we propose that the 
long-period DPG-T variations were related to the local environmental temperature, instead of ambient pressure 
variations. The time series at P1, which is the closest station to the T-sensor, has the highest correlation coefficient 
with the temperature variations, but the smallest time shift is found at P2. The correlation coefficients between the 
T-sensor and the DPGs decrease with increasing distance between them. Using the T-sensor data as a reference, 

Figure 2.  Spectral information. (a) Spectra of data from the T-sensor at 3131 m (T, red), from the differential 
pressure gauge (DPG) P1 at 3039 m (P1, blue, scale to the right), and from the pressure sensor at the current 
meter at 2936 m (P, yellow, scale to the far-right) for the period between September 1, 2017 and April 20, 2018. 
(b) Coherence between T and P1 (black), T and P (red), and P1 and P (blue). Dashed light blue, magenta, gray, 
green, and black lines mark the local buoyancy frequency (N), lunar semidiurnal frequency  (M2), local double 
inertial frequency (2f), lunar diurnal frequency  (K1), and local inertial frequency (f), respectively. Gray shades 
show the filtered bandwidth we used in this study.
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we removed the time shifts from the cross correlations, and found that the DPG-T variations (Fig. 3c) at P1 show 
a linear relationship (R = 0.87) with the T-sensor variations.

The total time shifts between T-sensor and DPG-T data may be caused primarily by thermal relaxation time, 
the slow response of the DPG system to the ambient temperature, and partially by internal-motion propagation. 
The thermal relaxation time takes hours while the internal wave propagation across the array takes from 12 to 
30 min. Such time shift relationships can be described as a simple equation of time shifts (see “Methods” section), 
and therefore the two different causes of the time shifts can be quantified using array analysis. We assumed that 
each DPG instrument behaves similarly, and has the same thermal relaxation time ( Tr ). Thus, the time shifts 
induced by the propagation of internal waves can be quantified using the total time shift ( Tt ) differences between 
the DPG-T variations that cancel out the constant Tr in the DPG-T variations.

Propagation of internal waves calculated from FK analysis. We used the DPG-T variations to esti-
mate the direction and speed of propagating internal waves using FK analysis (Fig. 4, see “Methods” section). We 

Figure 3.  Time-domain comparison between filtered T-sensor and DPG data between September 10 and 25, 
2017, with strong inertial internal motions. (a) Time series of pressure from the current meter. (b) Time series 
of referenced T-sensor and integrated DPG (DPG-T) data. For each DPG, we show the correlation coefficient 
and time shifts (in + hours) with respect to the T-sensor (T) and DPG-T P1 (P1), respectively. (c) Time shift-
corrected DPG-T P1 variations against referenced T-sensor variations for the 15-day period in (b). The dashed 
black line shows the regression line and R is the Pearson correlation coefficient between the referenced T and 
DPG-T P1 datasets.

Figure 4.  Directional phase propagation from data in Fig. 3b calculated using frequency-wavenumber (FK) 
analysis. Time series of (a) relative power, similar to goodness of waveform fits, (b) back azimuth (BAZ), and (c) 
slowness of propagation. (d) Polar plot of statistical BAZ and slowness (gray values in s  m−1) with sum of relative 
power in gridded bins. Cyan cross shows the BAZ (data points in b) and slowness (data points in c) weighted 
average by the relative power (data points in a).
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analyzed an event with strong inertial internal motions recorded by the T-string between September 10 and 25 
when Typhoon Talim was passing northwest of the  array25. The time series of back azimuths (BAZs) and slow-
ness from the FK analysis show that the internal waves were found to mainly come from the north to northeast 
of the array (Fig. 4b) and the propagating slowness varied by one order of magnitude between 0.5 and 6 s  m−1 
(Fig. 4c). A few waves propagated from the south of the array with slowness of 0.5–3 s  m−1 between September 
12 and 14. The varying slowness and BAZs of the internal waves might be caused by oscillating and sloshing 
of small-scale turbulent motions and high-frequency internal waves between topographic features in the array 
as found using other geophysical  datasets26. The slowness of the strong waves from the north ranges between 2 
and 4 s  m−1, i.e. a propagation speed of about 0.25–0.5 m  s−1 (Fig. 4d). This speed is consistent with the general 
phase speed of baroclinic inertial  waves27. The horizontal wavelengths of the inertial internal waves were about 
28–56 km.

We used FK analysis for other selected internal motion events (Table S1, see “Methods” section). There were 
1–3 events per month with clear internal motions passing through the array. The internal waves were mostly 
from the northwest and the northeast quadrants of the array with weighted average propagating slowness rang-
ing from 1.9 to 7.4 s  m−1 (Fig. S2). The average thermal relaxation times are between 4000 and 8300 s in the 
selected 15 events (Table S1).

Propagation of internal waves calculated from linear regression. We conducted root–mean–
squared linear regression of the distributions of Tt from cross correlation referenced by the T-sensor variations 
against the corresponding horizontal distance from the T-sensor along internal-wave propagation BAZ tracks 
to each station ( Dθ ). This is used to calculate the overall slowness and BAZ of the propagating internal waves for 
each event, as well as the thermal relaxation time (see “Methods” section). The regression functions show that 
the internal waves in the 15 events were mostly from the northwest and the northeast quadrants of the array 
with slowness ranging from 0.5 to 5.8 s  m−1 (Table S1). The estimated thermal relaxation times in different events 
ranged from 5000 to 8000 s (Fig. 5), and when fitting the 15 events as a whole is about 6300 s (Fig. S3). The 
regression-estimated BAZs are mostly consistent with the FK-analysis-calculated BAZs, with discrepancy < 30° 

Figure 5.  DPG-to-T-sensor horizontal distances along internal-wave propagation BAZ tracks against the time 
shifts between T-sensor and the DPG-T time series for selected events (Table S1). Events are defined by all pairs 
with correlation coefficient > 0.7. (a) Events with a coefficient > 0.8 and (b) with a coefficient between 0.7 and 
0.79.
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in most of the events (Fig. 6d). Although FK-analysis-estimated thermal relaxation times have a wider scatter 
ranging from 4250 to 8250 s (Fig. 6a), the regression-calculated slowness (O (1 s  m−1)) and thermal relaxation 
times (O  (103 s)) are of the same magnitude as those calculated using the FK analysis (Fig. 6b,c).

Discussion and conclusions
The high correlation between internal wave band data from DPG-T and T-sensor moored in the deep sea shows 
that ambient ocean temperature can affect long-period (0.002–0.1 mHz) pressure measurements of DPGs. This 
thermal effect can be caused not only by pressure-driven adiabatic processes but also by thermal conduction 
from the ambient environment exterior to the reference chamber. Applying the array analysis to T-sensor and 
DPG-T data, we can estimate the DPG thermal relaxation time caused by such thermal conduction. However, 
small-scale environmental difference and individual DPG configuration may cause uncertainties in quantify-
ing accurate thermal relaxation time and a response transfer function between DPG-T and temperature data.

The pressure generated by thermal expansion of both reference chamber and fluid affects long-period DPG 
signals. In a DPG, the thermal expansion coefficient of the reference fluid, silicone oil, in the chamber is one 
order of magnitude larger than the coefficient of the reference chamber. According to the relation between the 
reference pressure of the DPG and ambient  temperature16, there is about 1 Pa error if the temperature of the 
reference fluid and chamber changes by 0.8 μ°C assuming that the ambient pressure remains constant. Thus, 
the 0.1 °C difference from the typhoon-induced inertial motions in the deep-sea (Fig. 3b) might generate about 
 105 Pa response, which is larger than the surface-wave-induced pressure changes of about  104 Pa. Thus, the 
DPG data measured in this internal-motion-active area (Fig. 3b) barely show pressure variations from surface 
tidal motions. Such surface-wave pressure variations in the DPG-T variations are relatively small and thus are 
typically ignored. Comparatively, pressure variations driven by ocean-surface tides may dominate signals in the 
DPGs located at a flat deep seafloor in the open ocean where breaking internal waves are relatively inactive in 
weakly stratified waters. However, for the purpose of utilizing DPG-T responses as temperature data, it remains 
difficult to accurately quantify how much the amplitudes of the long-period variations are affected by pressure 
and temperature. In addition, the ingenious periodic slow leaking design of DPGs to avoid large excessive non-
ambient-pressure-induced fluctuations might inadvertently generate additional long-period DPG response vari-
ations not directly related to the ambient environment. How the simultaneous increase and decrease of pressure 
affects the reference pressure of the DPG needs further examination. However, the DPG-T derived phase shift 
information is still useful for internal wave studies.

Sloshing waves and turbulence from waves breaking in the array may violate the plane wave assumption and 
cause changes in propagating speeds and directions of internal waves during the events. Compared to the overall 
≥ 3-day duration of the internal motions fitted by the linear regression, the shorter duration of the 1.5-day time 
window with  104-s time shifts used for the FK analysis may characterize shorter-period sloshing waves and tur-
bulent motions induced by breaking of the waves in the array. Thus, the slowness and BAZs varied during the 
events. To reduce the issues on varying slowness and BAZs, it might be helpful to have arrays in an array with 
O (10–103 m) horizontal separation, i.e. a multi-scale array, to cover a broader range of frequencies of internal 
waves and their associated turbulent motions. Nevertheless, the weighted average slowness and BAZs from the 
FK-analysis, which represent the main propagating internal waves, are of the same order of magnitude and 
consistent in direction with those calculated from the regression method.

For the regression analysis, because the horizontal scale of the internal motions is much larger than the 
vertical scale, we assumed that the internal waves are 2D plane waves instead of 3D waves in reality. However, 

Figure 6.  Comparing results from the two different methods for the events in Table S1. (a) Statistics of thermal 
relaxation time  (Tr) calculated by regression (red) and frequency-wavenumber ‘FK’ (blue) analyses. (b) Thermal 
relaxation time, (c) slowness (S), and (d) BAZ (θ) difference between estimation from regression and FK analysis 
in every event. Gray dots show data from the 15 events. The lower and upper lines on the sides of each box show 
the 25th percentile (Q1) and the 75th percentile (Q3) of the data, respectively. Median and mean values are 
shown with a dashed line and cross, respectively. The range between the bottom and top lines is within one and 
a half interquartile of Q1 and Q3.
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this assumption may underestimate the slowness of the internal waves, so that the thermal relaxation times may 
be overestimated using the equation of time shifts. However, the varying thermal relaxation time in the events 
range over the same orders of magnitude  (103–104 s). The periods of the DPG-T variations we analyze here are 
longer than the instrumental thermal relaxation time, demonstrating that the DPG may detect temperature 
fluctuations from internal waves.

The varying thermal relaxation times may also be due to differences between individual instruments. By 
allowing instrument-specific thermal relaxation times, we found statistically significant improvements in fit-
ting of the regression model, indicating the DPGs may have their own thermal relaxation time (Text S1 and 
Fig. S3). On the other hand, assumption of allowing event-specific thermal relaxation times is not supported by 
the statistical examination (Text S1). The various time constants of each DPG do not have a systematic chrono-
logical trend except in the first three events (Fig. S4). Such scattering might be due to uncertainty of regression 
techniques and small-scale internal waves. Future studies are needed to better address this issue. For instance, 
analyzing data from exactly co-located T-sensors and DPGs may allow us to directly estimate the thermal 
relaxation time. Doran et al.21 demonstrated that the sensitivity and time constant of DPGs varied by at least a 
factor of two. Those variations are related to the depths at which instruments were deployed, seawater density, 
unpredictable behavior in the reference fluid under deep-sea mooring conditions, and slight imperfections of 
instrument components. Thus, they proposed that in-situ calibration of individual DPGs can improve accuracy 
of geophysical and oceanographic observations. This field dataset demonstrates how long-period DPG data are 
affected differently at each site by fluid motions, supporting the conclusions of Doran et al.21. Nevertheless, the 
high coherence of DPG signals among different stations (Fig. 3b) also suggest that slight imperfections of instru-
ment components might not be an issue.

We applied array analysis to characterize the properties of propagating internal waves, without quantifying the 
pressure or temperature amplitudes associated with the waves; thus, the inaccuracies due to instrument-induced 
uncertainties are not a critical issue. Long-period DPG records can provide complementary observations to study 
deep-sea internal waves using array analysis. The varying thermal relaxation times during different internal wave 
events show that, in the future, multi-scale array observations may help to understand patterns of internal wave 
propagation over seafloor. In addition, further in-situ temperature calibration of the DPGs is needed by mount-
ing a high-resolution temperature sensor on each OBS. Such datasets may help to build temperature response 
functions of the DPGs for further utilizing the data for physical oceanographic, seafloor geodetic, and ocean 
bottom seismological studies.

Methods
Instrument settings and data calibration. The Cox–Webb DPGs were built by the Institute of Earth 
Sciences of Academia Sinica. The output data were recorded using a well-tested in-house digitizer with a 100 Hz 
sampling rate. Instrument-caused diminished response is corrected using the general response function of the 
DPG and the sensitivity of the digitizer. The corrected DPG data at low-frequencies (< 3 mHz) may include a 
non-ambient-pressure-induced response (Fig. S5), e.g., temperature variation with time. Thus, we use the appar-
ent pressure Pa*, instead of Pa, to discriminate fluctuations from ambient pressure.

The T-string had 101 T-sensors at 2-m intervals between 2937 and 3137 m that sampled data at a rate of 0.5 Hz 
and a Nortek AquaDopp acoustic current meter with pressure sensor at 2936 m sampling every 10 min. The 
T-sensors, with precision < 0.0005 °C and noise level < 0.0001 °C, were built by the Royal Netherlands Institute 
for Sea Research (NIOZ)28. Here, we used data from the T-sensor at 3131 m, just 13 m above the seafloor, to 
minimize the influence of high-frequency temperature fluctuations caused by turbulent disturbances higher in 
the water column.

Time shift equation. The total time shifts between T-sensor and DPG-T variations can be described simply 
by the following equation:

Tt is the total time shift between the T-sensor and DPG-T variations. S × Dθ is the time shift caused by the propa-
gation of internal waves. S is the horizontal slowness of the internal wave. Dθ is the horizontal distance between 
DPG and T-sensor along internal-wave propagation BAZ tracks. Tr is the thermal relaxation time.

Internal wave events. Fifteen internal wave events (Table S1) were identified by cross correlation using a 
3-day time window with 1-day shifting step for every pair of T-sensor and DPG-T variations with correlation 
coefficient > 0.7 to ensure that events with duration > 3 days can be integrated to the same event. The events have 
internal motion lasting ≥ 3 days, including ≥ 2 cycles of the local inertial periods and ≥ 3 cycles of tidal periods.

Beamforming‑frequency‑wavenumber analysis. Beamforming-FK analysis transforms waves to fre-
quency-wavenumber relations before ‘beams’ and stacks them over a predefined grid for slowness points. It then 
calculates the power of a beam with different slowness and BAZs of an assumed incoming plane wave crossing 
the array, allowing us to find the preferred model of apparent slowness and BAZs. The slowness and BAZs of 
the internal waves in each event were calculated from the long-period DPG-T variations using a 1.5-day time 
window, which includes the inertial and tidal periods, and a  104-s window shift.

Root‑mean‑squared linear regression method. Root-mean-squared linear regression of the distribu-
tions of Tt from cross correlation referenced by the T-sensor variations and Dθ at each station can be used to 

Tt = S × Dθ + Tr
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calculate the overall slowness and BAZ of the propagating internal waves for each event. We searched the Dθ at 
each station using a grid search of DPG to internal-wave BAZ every 1° within 360° to find the one that gives the 
maximum Pearson correlation coefficient R. According to the equation of time shifts, the slope and intercept of 
the regression line are the average horizontal slowness of the propagating internal wave and the thermal relaxa-
tion time, respectively.

Data availability
Data associated with the present paper are available from the TEC Data Center (https:// tecdc. earth. sinica. edu. 
tw/ WAV/ Green Islan dArray).
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