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ABSTRACT
Ocean motions at frequencies of the internal wave band are generally associated 
with freely propagating waves that are supported by stable vertical stratification in 
density. Previous analyses of yearlong current observations from the Bay of Biscay 
showed that a finestructure of semidiurnal tidal and near-inertial higher harmonics 
fills the spectrum. Here, a simple model is presented of forced nondispersive motions 
with forward energy cascade. The model fits the spectral shape of higher harmonics 
well within statistical significance and shows that such interactions imply maximum 
wave steepness in a balance between forcing and turbulent mixing. The single fitting 
parameter takes a value of approximately one, at which the barotropic tidal flow 
speed equals the internal wave phase speed. We infer that the barotropic tide sets 
a non-linear limit to baroclinic current scales without generating non-linear higher 
harmonics directly.
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1. INTRODUCTION

Following in situ observations (e.g., Pinkel et al., 1987; 
Mihaly et al., 1998; van Haren et al., 1999) and numerical 
modeling (e.g., Xing and Davies, 2002; Pichon et al., 
2013) the oceanic internal wave ‘IW’ band is not always 
a smooth broadband spectrum, but it can be dominated 
by a sequence of peaks associated with near-inertial 
and/or semidiurnal tidal motions and their higher 
harmonics.

In theory, freely propagating internal gravity waves 
can exist in the IW frequency (σ) band between |f(j)| < σ 
< N(z), N >> f. The frequency range is limited at the high 
end by the depth (-z) dependent buoyancy frequency 
N(z) = (-g(dlnr/dz+g/cs

2))1/2, where g is the acceleration 
of gravity, and cs the speed of sound describing 
compressibility effects. At the low end, it is limited by 
the latitudinal (j) dependent inertial frequency f(j) = 
2Wsinj, which is twice the local vertical component of 
the Earth’s rotation vector W (e.g., LeBlond and Mysak, 
1978). Suggestions have been made (Mihaly et al., 1999; 
Xing and Davies, 2002) that near-inertial motions are 
important for transfer of energy inside the IW-band 
through non-linear interaction with semidiurnal tidal 
motions. Higher tidal and inertial-tidal harmonics are not 
only observed in shallow seas (van Haren et al., 1999), but 
also in the deep ocean near and away from topography 
(Mihaly et al., 1998; van Haren et al., 2002). These 
observations seemed to confirm the hypothesis that 
(breaking) non-linear internal waves may be important 
for diapycnal mixing (Müller and Briscoe, 1999).

In this paper a simple heuristic model is proposed 
describing non-linear interactions that generate such 
higher harmonics peaks in the IW-band and fit the 
spectral shape of yearlong current meter observations 
from the deep Bay of Biscay. The model follows 
theoretical suggestions (Phillips, 1977) on forced 
non-resonant interactions and adds to continuous 
smooth spectra (Garrett and Munk, 1972) describing a 
symmetric and isotropic linear wave field without tides. 
By investigating tidal and inertial-tidal higher harmonics, 
it differs from open-ocean models describing weakly 
non-linear resonant and near-resonant interactions that 
lack motions at these frequencies (e.g., McComas and 
Bretherton, 1977; Lvov et al., 2012; Eden et al., 2019). 
Previously, no model existed for the spectral shape 
of non-linear higher harmonics in the open-ocean, 
although there were studies about relative importance 
of such constituents in tidal context, mainly for shallow 
seas (Dronkers, 1964; Pingree and Maddock, 1978; 
Parker, 1991). Hence, their naming as ‘shallow water—
tidal—constituents’, which are for instance important for 
frictionally induced sediment transport (Groen, 1967). 
Because non-linear friction is considered small in the 
open-ocean, we here consider non-linear advection, 

which occurs in the momentum equations, to describe 
deep-ocean motions at higher harmonic interaction 
frequencies.

It is common that simplified models are based on 
strong assumptions. The simplified ‘cartoon’ model, 
proposed below, describes the cascade of tidal and 
inertial-tidal higher harmonics. It not only assumes that 
advection dominates other forces in the equation of 
motion, but also that advection of the ‘barotropic’ surface 
tide as well as of inertial motions does not play a role 
due to large scales compared to the small scale of the 
internal-tide. This scale-separation immediately clarifies 
why inertial-inertial interactions, leading to motions 
at frequencies 2f, 3f etc., and, consequently, advection 
of the ‘baroclinic’ internal tide by these inertial higher 
harmonics, that would e.g. lead to M2+2f, are weak. M2 
denotes the semidiurnal lunar tidal frequency.

Uniformly-stratified fluids may display both free, 
resonant as well as forced, non-resonant higher 
harmonics (Phillips 1977). These forced higher harmonics 
do not obey the free-wave dispersion relation. As shown 
here, such harmonics as observed in the deep Bay of 
Biscay, can apparently be captured by a simple one-
parameter recursive non-linear model. Interestingly, the 
estimated value of the single fitting parameter suggests 
this occurs when the barotropic current approximately 
equals the internal wave phase speed.

2. OBSERVATIONS

Currents were evaluated from two moorings deployed in 
the Bay of Biscay NE-Atlantic Ocean during 11 months, 
above the continental slope at 46°39´ N, 05°29´ W (water 
depth H = 2450 m) and above the abyssal plain at 45°48´ 
N, 06°50´ W (H = 4810 m), see Figure 1. The focus is on 
data from the uppermost Aanderaa RCM-8 single-point 
current meter at 1000 m above the bottom in each 
mooring. This distance above the seafloor is well above 
any internal wave breaking at the local seafloor slope. 
Horizontally, it is at least 10 km from topography, and 
the deepest site is more than 100 km from the foot of the 
continental slope. However, the rugged continental slope 
shows strongly non-linear internal waves that vigorously 
break (e.g., van Haren, 2006). The continental slope is 
also where internal (tidal) waves are generated and 
where these waves possibly are focused by reflection. It 
is unknown however, how far from the slope its effects 
are sensed. Numerical modelling suggests the spread of 
internal tides throughout the Bay of Biscay (e.g., Pichon 
et al., 2013).

From a few CTD density profiles, obtained near the 
moorings, stratification was estimated N(z) = (1 ± 0.5)
(20 + 0.0034z) cpd, –4480 < z < –2740 m (frequency was 
calculated in cycles per day, 1 cpd = 2π/86400 s–1). The 
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significant one-standard deviation of variations follows 
from computations over small 10-m vertical scales that 
will play a significant role in the modelling later on. The 
large-scale depth dependence changed abruptly above 
2740 m. At 1500 m, N ≈ 28 cpd.

Tidal harmonic analysis (Dronkers, 1964) was used to 
split a highly deterministic narrowband large-scale signal, 
here termed ’barotropic’ signal, from the remainder 
‘baroclinic’ or internal, difference signal. The application 
of the sharp harmonic band-pass filter to the 11-month 
long records results in a small fundamental bandwidth 
which is more than an order of magnitude smaller than 
the bandwidth of baroclinic signals and ensures an 
effective split (van Haren, 2016). Because we use current 
meters, the barotropic signal represents a time-coherent 
signal at a limited number of semidiurnal constituents. 
At M2 the barotropic signal is about twice the value of the 
baroclinic signal.

Observed kinetic energy spectra PKE(σ) revealed larger 
energy at shallower depth (where N is larger), except at 
f (Figure 2). For the entire IW-band larger energy was 
found at localized frequencies associated with inertial 
and semidiurnal tidal motions (indicated as f and (lunar) 
M2, respectively) and higher harmonics (indicated as M4, 

M6,…and M2+f, M4+f…). These energy peaks exceeded 
the spectral continuum that sloped with frequency like 
PKE ~ σ–1, for f < σ < 7 to 10 cpd. A σ–1 spectral slope, 
‘pink noise’ (Schroeder, 1991), has been observed in 
temperature spectra from other open-ocean areas away 
from topography (van Haren and Gostiaux, 2009). Such 
a σ–1 spectrum is broadly seen as bearing evidence of 
self-organized criticality (Bak et al., 1987), the generation 
of barely stable structures of critical states (Schroeder, 
1991). It motivates this paper’s interpretation of 
observed tidal and inertial-tidal harmonics as bearing 
evidence of a fast and non-linear IW-interaction up 
to the point of breaking. At higher frequencies, the 
continuum sloped steeper. Higher harmonics were 
observed above their respective continuum levels up 
to M10 at the deeper site and up to M16 at the shallower 
site. The higher harmonics were found in a sequence of 
decreasing amplitudes. Recalling that the observations 
were made at single points in space, it is unlikely that 
they represent locally-forced, freely-propagating higher 
harmonic internal waves (e.g., Lamb, 2004). At different 
internal wave frequencies, energy would propagate along 
differently inclined beams, which would not provide a 
monotonically decreasing sequence of higher harmonics 

Figure 1 Current meter mooring sites in the Bay of Biscay with black contours of topography every 1000 m water depth. The coloured 
dots correspond with the spectra in Figure 2.
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variance in single-point measurements as observed here 
(but possibly only when averaged over many spatially 
distributed instruments).

When the kinetic energy was large at f (deepest 
mooring, small N), energy at f-interaction frequencies 
(e.g. M2+f) showed a spectral fall-off rate with frequency 
like PKE ~ σ–3, which was a typical fall-off rate, or even 
steeper, for higher tidal harmonics, see red plusses in 
Figure 2. When energy at f was reduced (shallowest 
mooring, large N), energy at Mn+f, n = 2, 4,…, scaled 
like ~σ–2. When smoothed strongly, the latter records 
showed overall spectral fall-off rate close to ~σ–2 for f < 
σ < N (van Haren et al., 2002). For the deepest mooring 
with relatively large inertial-tidal and tidal harmonics, 
the heavily smoothed overall spectral fall-off rate 
was faster ~σ–3. This is significantly steeper than the 
canonical fall-off rate PKE ~ σp, –2.5 < p < –1.5 for open-
ocean internal waves (Garrett and Munk, 1972). At 2f, 3f, 
M2+2f, etc., motions do not exceed the continuum level 
(van Haren et al., 2002), a property we commented on 
in Section 1.

3. SPECTRAL MODEL FOR INTERNAL 
WAVE HIGHER HARMONICS

In an inviscid uniformly-stratified fluid, a single-
frequency free plane obliquely propagating internal 
wave (or a set of collinear propagating plane waves) is 
governed by linear equations as the non-linear advection 
terms exactly cancel in the equations for vorticity and 
buoyancy (LeBlond and Mysak, 1978). This follows from 
the absence of variations in the planes of equal phase, 
and which distinguishes internal from surface waves. In 
a tilted (ξ, ζ)-frame (Figure 3a), a plane internal gravity 
wave (wave vector k = (k, l) = (0, l)) has its velocity vector 
u = (û, ŵ) = (û, 0) perpendicular to the ζ-direction into 
which velocity and buoyancy perturbations vary. This 
follows from incompressibility, —·u = 0, which implies 
k·u = u·k = 0, meaning that also the advection operator 
vanishes, u·— = 0.

However, in reality non-linearity is not expected to 
vanish. Like surface waves, internal waves may manifest 
themselves partially as displacement waves on layers 

Figure 2 Kinetic energy spectra from 11 months of current meter observations at 1000 m above the seafloor in H = 4810 m water 
depth (red) and H = 2450 m (blue). Spectra were moderately smoothed (n ≈ 30 df) and not offset vertically. The difference in energy 
levels between the spectra corresponded to the difference in N(z), which variation is indicated between the vertical bars in the top-
right corner. This corresponds with the vertical distance between the sloping lines at fall-off rates σ–1 (solid and dashed corresponding 
to red and blue spectra, respectively). Constant slopes in log-log plot are indicated “–1,–2,–3” representing σ–1, σ–2, σ–3, respectively. 
Spectra of model (2) are superposed for observed barotropic and baroclinic fundamental tidal amplitudes and fitting parameter γ. 
Three model examples are given, two for tidal-interactions (+) and one for inertial-tidal-interactions including frequency-corrections 
to coefficients (o). They fit well the observed energy levels for nearly the same γ (see text). In all cases, reference amplitude is the 
barotropic M2 current amplitude, indicated at f and M2 (leftmost o, +). Baroclinic M2-variance are a quarter of peak M2-values.



386van Haren and Maas Tellus A: Dynamic Meteorology and Oceanography DOI: 10.16993/tellusa.45

of enhanced stratification. This is because the ocean 
rather consists of non-uniform, alternatingly weaker and 
stronger stratified layers (interfaces) (Figure 3b). Such 
‘interface waves’ may grow up to highly non-linear shock 
waves (Platzman, 1964). Due to variations in source, for 
example at different sites and due to varying stratification, 
internal waves propagate in groups of limited size which 
provides their intermittent character, and non-linearity 
may be imperative to prevent dispersion (Thorpe, 1999).

Sofar, no general solution has been given to describe 
strongly non-linear internal wave motions using the full set 
of governing equations (Shrira, 1981). The mathematics 
is too complex. Theoretical and numerical modelling 
has been performed on weakly non-linear interactions 
between open-ocean internal waves and in idealized 
settings under resonant or near-resonant conditions 
(e.g., McComas and Bretherton, 1977; Lvov et al., 2012; 
Eden et al., 2019). The ocean models find low and high 
frequency energy representing currents and waves, 
leaving a gap between 2f and 3f, But such energy gap 
is not generally found in ocean observations. Idealized 
tidal models under near-resonant conditions typically 
consider incident, horizontally-propagating, vertically-
standing internal modes (Baker and Sutherland, 2020), 

or internal wave beams obliquely incident on vertically 
rapidly varying ‘thin-layer’ stratification (Diamessis et al., 
2014). Such models do find (first) higher harmonics, but 
only near the main pycnocline and not throughout the 
deep ocean.

However, considering that internal waves occur 
intermittently (Wunsch, 1975) and in groups, we infer 
that the occurrence of rapid variations in stratification 
on scales much smaller than the internal wavelength 
must be ubiquitous. This prohibits an innocuous 
adiabatic (WKB) adjustment of a passing internal wave 
beam. Instead, it gives rise to its genuine scattering, 
which continuously involves the partial reflection of 
the principal internal wave beam. This implies that now 
some transverse motion occurs all along the incident 
wave beam, reinvigorating the non-linear advection. The 
crude way in which we aim to take this into account in 
our simple model is to acknowledge that along-beam 
velocity variations now occur on very small scales all 
along the internal wave beam. This simple model, along 
the lines of non-linear wave deformation found in shock 
waves (Platzman, 1964), is adopted here as it adequately 
predicts an energy spectrum of higher harmonics, as 
observed.

Figure 3 Sketch of internal tidal velocity and its direction of variation. (a) In a uniformly stratified ocean velocity only varies in the 
direction of phase speed c, not in the direction of energy propagation cg. (b) In a non-uniformly stratified ocean in which incoming 
energy splits in transmitted (T) and reflected parts (R) velocity may vary dominantly in the direction of energy propagation when the 
scale of variation in ξ is smaller than the wavelength of the incident internal wave. The blue lines indicate isopcynals whose smaller 
distance between them implies stronger stratification across an interface.
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Consider a deformed wave’s discrete kinetic energy 
spectrum Pj(σj) = ½ÛjÛj

*, the asterisk denoting complex 
conjugate, of IW scalar current components ûj = 
Ûjexp[i(kjξ-σjt)] with frequency σj, wavenumber kj and 
scalar amplitude Ûj. Here, i2 = –1 and j is a positive integer 
starting from the fundamental baroclinic component j = 
1. The coordinate ξ is in the oblique energy propagation 
direction of the deformed wave, parallel to the phase 
lines. It is assumed to indicate the direction of the largest 
baroclinic current component û, associated with an 
internal tidal beam, but this beam is deformed by non-
uniform stratification (Figure 3b). This lends the beam an 
along-beam variation at wave number k1. Compared to 
the horizontal barotropic current, the latter may have a 
relatively large component in the perpendicular direction. 
Similar along-beam variations have been considered 
in sophisticated models concerned with subharmonic 
internal wave generation (Fan and Akylas, 2021), absent 
in our observations.

Remark that the incident internal wave beam ~exp(-
ilζ) in a uniformly stratified fluid contains the dependence 
on the transverse ζ-direction, into which its phase mainly 
propagates (Figure 3a). But in the non-uniformly stratified 
fluid the wave’s cross-beam wavenumber l is assumed 
to be small, l<<kj. Thus the ζ-dependence is suppressed 
here (it is assumed to be virtually uniform on the scale 
of the along-beam variations), and does not contribute 
non-linearly to the higher harmonics. This leaves the 
along-beam velocity, or the velocity of interface waves 
resulting from beam-transmission and –reflection, now 
having a ξ-dependence due to non-uniform stratification 
(Figure 3b). This is also affected by the presence of mean-
flow shear, and non-Boussinesq and viscous effects. 
Ocean measurements indeed reveal such variations 
along the internal tidal beam through patchiness of 
the along-beam velocity (van Haren et al., 2010) that 
motivates this description of ûj.

In our model discrete spectrum only those parts are 
considered that are entirely governed by advection in the 
wave-energy propagation direction, ξ, and no advection 
perpendicular to this direction. The model expresses 
forced non-linear interactions between linear motions that 
result in bound non-freely-propagating motions. Rotation 
is neglected by assuming that interactions are fast 
compared with the inertial period, resulting in motions at 
frequencies σ >> f. A pressure gradient forcing is assumed 
being linear and only governing the fundamental (j = 1) 
tidal component. Diffusion is neglected. For clarity, we 
here exclude both advection by a barotropic surface tidal 
current û0 (Û0, σ0 = σ1, k0 ≈ 0), since we consider motions 
within a barotropic oscillating system, as well as advection 
of the barotropic component because its wavenumber 
k0 << k1. We thus base the following cartoon model (1) 
on the shock-wave model of Platzman (1964) and on 
dominance of the advection term describing non-linear 

motions in shallow seas (Pingree and Maddock, 1978; 
Xing and Davies, 2002). The model apparently captures 
our deep-ocean observations for j = 2, 3, …,

j-1
j j-i

i
i 1

ˆ ˆu u
û .

t =

∂ ∂
= −

∂ ∂ξ∑  (1)

Only non-resonant higher harmonics σj = jσ and kj = jk 
are found here as the compound wave’s frequency and 
wavenumber do not themselves satisfy the dispersion 
relation, required for resonant triads (Dauxois et al., 
2018). This means that the newly generated higher 
harmonics do not propagate as free waves along a 
different inclination, away from the beam they are 
generated by. Instead they propagate along the beam, 
in their turn advecting spatial variations in a like manner 
along the beam.

Equation (1) implies a forward cascade of energy 
from a source at a fundamental baroclinic internal 
(tidal) constituent (σ1, k1, Û1) ≡ (σ, k, Û), determining the 
amplitudes of the successive harmonics,

j 1
j 1

j i j-i j
i 1

k j iˆ ˆ ˆ ˆU = U U q U,
j

−
−

=

−  ≡ γ σ 
∑  (2)

recursively defining factors j

1 1 5 7 21
q , , , , ,

2 2 8 8 16
= … for j = 

2,3,4,5,6, …, etcetera, and depending only on parameter 
γ = Û/c, with c = σ/k denoting the phase-speed of the 
fundamental harmonic. A constant c (cj ≡ σj/kj = c), as 
found here for all the higher harmonics of the baroclinic 
M2 tide, is remarkable. It not only implies non-dispersive 
wave steepening, but, since the internal wave and its 
higher harmonics are synchronized a spatio-temporal 
coherency. As we will see below, this synchronization is 
lost when waves of other frequencies and wave numbers 
advect the baroclinic tide. In that case the compound 
frequency and wave number do no longer grow at the 
same rate, implying varying cj and loss of coherency. This 
translates in an absence of spectral peaks at frequencies 
as M2+2f etc. The model (2) contrasts with the shock-
wave model by Platzman (1964), which also includes a 
backward cascade.

From (2) a consistent model spectrum Pm(σ) = ∑j Pj(σj) 
is obtained fitting the observed kinetic energy at discrete 
frequencies ∑j Pdf(σj) after tuning to γ = 0.48 ± 0.05 under 
the conditions |log(Pdf(σj)/Pj(σj))| < 10% for all j and σ < N 
(Figure 2). The first condition implies that the observed 
and modelled spectra do not differ by more than 10% 
in variance at the discrete interaction frequencies. The 
small standard deviation, which is well within 95% 
statistical significance of the spectra, expresses the 
sensitivity of the model to γ. It yields the surprising result 
that Û0 = (0.96 ± 0.11)c, using observed Û0/Û = 2.0 ± 0.15 
following harmonic analysis splitting the original signal 
into semidiurnal time-coherent signal and its remainder 
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baroclinic signal. It suggests ∑j Pdf(σj) is the spectral 
representation of the spatio-temporal process of internal 
wave steepening and possibly breaking.

Thus, large scale barotropic Û0 is found setting a non-
linear limit that determines baroclinic Û-length scales, 
whilst not generating non-linear constituents directly. 
This can be seen as for k0→0 barotropic advection 
yields only forced, non-resonant, dispersive (σj = jσ, kj = 
k) harmonics Ûj = (Û0/c)j–1Û/j!. Using the same γ, these 
constituents show a much faster energy drop with 
frequency than the observed σ–3 (for σ > M4).

Advection of baroclinic M2, M4, …, by motions at 
other frequencies, such as at the inertial frequency f, 
leads to spectral amplitudes at M2+f, M4+f, ….. For areas 
having approximately the same amplitude at f as Û, the 
model fits the observations with a γ-value within the 
above error bounds (see red symbols in Figure 2) with 
coefficients for qj that include a frequency correction. 
As motions at f are supposed to be large-scale they will 
however not themselves be subject to advection. This 
implies that there is no spectral route to provide energy 
at M2+2f, M2+3f, …, or M4+2f, …, etc. More seriously, as 
aluded to above, the combination frequencies M2+f, 
M4+f, …, loose their spatio-temporal synchronization. 
Their wave numbers do not increase at the same rate 
as the combination frequencies, implying a loss of 
coherence. This reasoning equally applies to motions at 
all neighbouring frequencies. In fact, Figure 2 shows that 
the shape of the primary inertial-semidiurnal f/M2 band 
is transposed to the M2+f/M4 band via the baroclinic tide 
following (2), and similarly to higher frequency bands. 
Hereby, the shape-shrink in frequency is attributable to 
log-log plotting and the self-similar variance-shrink to 
(2) that equally affects all frequencies in the primary 
band. The splitting of energy to neighbouring frequencies 
is in part due to interactions with the slowly varying 
stratification background (van Haren, 2016).

4. DISCUSSION

Compared to background energy levels, large variance 
at tidal and inertial-tidal higher harmonics is observed at 
the deep site, more than 100 km from the continental 
slope. It may be questioned whether motions at 
these higher harmonics are reminiscent of non-linear 
interactions between and by deformation of internal 
waves in the ocean. Alternatively, these motions may be 
the result of effects of sloping underwater topography 
upon which internal waves break. The associated 
strong turbulence may reach far into the deep ocean. 
Observations are lacking of turbulence, but numerical 
internal tide modelling demonstrates the possibility of 
multiple interactions at such distances from topography 
(Pichon et al., 2013). The non-linearity as in observed 

higher harmonics suggests that turbulence may not be 
negligible locally.

This is because the observed similarity of semidiurnal 
particle displacement speed and phase speed, as in 
hydraulic jumps at the point of overturning, suggests 
a gradient Richardson number Ri ≈ 1. It also suggests 
a transition from weak wave-wave interaction to, 
strong, stratified turbulence (Phillips, 1977; D’Asaro 
and Lien, 2000). Ri ≈ 1 leads to marginal stability for 
non-linear three-dimensional flows (Abarbanel et 
al., 1984). In shallow seas, the associated turbulent 
diapycnal exchange is found sufficient for nutrient 
replenishment into the photic zone (van Haren et al., 
1999). Here, it is interpreted as saturation of non-
linear gradients balanced by mixing parameterized 
by γ. As γ = πL/λ (L = 2Û/σ denoting particle excursion 
length), the model results imply horizontal wavelength 
λ of about 5 km of the fundamental constituents and 
particle speeds of fundamental constituents of 0.05 m 
s–1 as observed, for both inertial-tidal and tidal higher 
harmonics. Because γ was found independent of N, 
this length-scale may be fundamental for baroclinic 
non-linear transfer via advection. Like in shallow 
seas, the advection term seems to dominantly 
generate non-linear deep-ocean motions in the Bay  
of Biscay.

The simple model used here invites future clarification 
of a balance between internal wave forcing and 
diapycnal mixing in more sophisticated non-linear 
internal wave models. As existing numerical models 
are generally based on the Garrett and Munk (1972) 
spectrum considering weakly non-linear interactions in 
the open ocean only, it is suggested to include internal 
tide breaking at underwater topography. Promising 
results have been obtained from saturation model of 
internal tides over abyssal hills that captures the slow 
decrease of turbulence over at least 500 m from the 
seafloor and acknowledges the importance of small 
topography and internal wave scales (Muller and Bühler, 
2009). Such models may be extended to include higher 
harmonics.
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