Reference:

van Haren, H., 2006. Cruise report bsik/LOCO-IW06: R.V. Pelagia cruise 64PE248, 17 May - 12 June 2006, NIOZ, 40 pp.

Cruise Report

R.V. Pelagia cruise 64PE248 17 May – 11 June 2006 Santa Cruz (Tenerife, E) – Funchal (Madeira, P)

Hans van Haren (with contributions from participants)

Royal Netherlands Institute for Sea Research (NIOZ), P.O. Box 59, 1790 AB Den Burg, The Netherlands hansvh@nioz.nl

(Photo: L.Boom)

0. Contents

1.		Summary of R.V. Pelagia LOCO-IW06 cruise					
2.		General research aim		4			
3.		LOCO-IW06 overview		5			
4.		Participants		10			
5.		Data acquisition and instrumentation		11			
	a.	LOCO-IW06 (/3) moorings		11			
	b.	DOC moorings		12			
	c.	Shipborne sampling		13			
	d.	Deep-towed ADCP's		13			
	e.	Argo floats		13			
6.		Daily summary		14			
7.		Scientific summary and preliminary results		19			
	a.	Long-term mooring recoveries		19			
	1	.Moorings LOCO11/2-13/2		19			
	2	.Deep-dredging LOCO14/2		21			
	b.	short-term mooring deployment and retrieval		21			
	c.	Long-term mooring deployments		22			
	1	.Moorings LOCO11/3-18/3		22			
	d.	CTD sampling		24			
	e.	LADCP	(by C. Veth)	25			
	f.	Yoyo-CTD/LADCP	(by T. Gerkema)	26			
	g.	FLY microstructure profiler	(by C. Veth & M. Laan)	26			
	h.	Deep-towed ADCP's above GMS		27			
8.		Acknowledgments		28			
Appendix A Mooring diagrams (by Dept. MTM & T. Hillebrand)							
Appendix B Cruise summary of stations (activities) of LOCO-IW06 (M. Hiehle)							

1. Summary of R/V Pelagia LOCO-IW06 cruise

In May 2006 the R/V Pelagia (NIOZ, The Netherlands) sailed to the Canary and Cape Verdes Basins (North-Atlantic Ocean), mainly to recover and deploy long-term moorings within Long-term Ocean-Climate Observations ('LOCO'). LOCO is a large investment programme funded by N.W.O., the Netherlands Organization for the advancement of scientific research. LOCO aims to investigate ocean physics process variations on time scales of years using long-term moorings. In the deep North-Atlantic basins we study detailed variations in waves in the ocean interior ('internal waves', IW), especially the most energetic 'near-inertial' waves, and their impact on deep-ocean mixing and the large-scale ocean circulation. In some details, tidal IW are studied above a single underwater volcano.

The working area of LOCO-IW is the abyssal plain and Great Meteor Seamount (GMS) in the Canary Basin near 30° N, 23° W (~5200 m depth). In October 2004 four long moorings were deployed for the duration of 1.5 years. The long moorings reached up to 3700 m above the bottom. They consisted of 5 current meters sampling generally once per 15 minutes. Two moorings also carried a 75 kHz acoustic Doppler current profiler (ADCP) in the top buoyancy element. During LOCO-IW06 three of these moorings were successfully recovered delivering 95% good data. Unfortunately, one long-term mooring could not be retrieved. Dredging attempts were unsuccessful.

Eight long moorings were re-equipped with on average five current meters each; five moorings carry ADCP's in the top. This time, the Canary Basin array is extended to the Cape Verdes Basin to study internal tide variations. These moorings were successfully deployed. Two short-term moorings were on a 8% bottom slope near the top of Great Meteor Seamount (GMS). These moorings held NIOZ built fast and accurate thermistor strings sampling at 1 Hz. One of these (NIOZ3) delivered generally good data during its maiden deployment. The other (NIOZ2) failed after half a day. During the cruise several conductivity-temeparture-depth (CTD) profiles were obtained in conjunction with lowered-ADCP (LADCP) to map the finescale and background hydrography. Additionally, many Fly-microstructure casts were launched to estimate turbulence dissipation rate and eddy diffusivity in the upper 1900 m of the water column. CTD-LADCP, FLY and ship's winches worked nearly flawlessly, except for shortage twice. Finally, two 75 kHz ADCP's were mounted in a frame and successfully towed at depths down to 800 m to monitor internal tidal beams above GMS, followed by 25 hours of yoyo-CTD.

The cruise was successful. Weather conditions were extremely good causing no delays. All overboard operations went very well, including the recovery and deployment of the long moorings. The re-deployment of moorings was never further than 100 m from the intended latitude, well within the aim.

2. General research aim.

LOCO

The N.W.O.-financed large investement programme Long-term Ocean-Climate Observations (LOCO) aims to carry out some regional experiments which are required for the development of an ocean observation system for CLIVAR and other related global monitoring programmes. The instruments will be used to obtain long-term observations of the current field and transport of heat and fresh water in some critical areas of the global ocean circulation and of processes in the ocean interior providing energy for diapycnal mixing, for example due to internal waves, a key parameter in controlling the large scale circulation. In order to observe low-frequency variations due to the El-Niño cycle and the North Atlantic Oscillation may be covered. The experiments with moored sub-surface measuring systems build upon previous WOCE (World Ocean Circulation Experiment) and CLIVAR projects, carried out by Dutch oceanographers. It will extend existing time series and/or monitoring programmes and will be carried out in the framework of internationally coordinated research programmes.

LOCO-IW

Within LOCO two sets of four moorings will be used to study in more detail the climatological mean of spatial and temporal variability of internal-wave intensity. This will be done for different types of basins (above sloping topography and far away from boundaries in deep-ocean basins). The first set of these moorings will be located for medium-long periods (~1½ years) at mid-latitudes in the North Atlantic Ocean, and the second set near the LOCO-throughflow sites in the Irminger Basin, the Cape Verde Basin towards the Equator to study specific processes like near-inertial wave propagation. Together these sites are exemplary for most internal wave appearances.

LOCO-IW Canary Basin

The purpose of the LOCO-IW06 cruise is to study the climatologic effects of internal waves on the deep-ocean. Specifically, we study near-inertial internal motions generated via geostrophic adjustment due to the Earth's rotation, for example following atmospheric disturbances, and those by diurnal tides (between 15-33° N, ~along 25° W). During the cruise 4 moorings will be recovered and 8 (re)deployed. Most moorings extend 3.7 km above the bottom (1.5 km below the sea surface). These moorings contain current meters and temperature sensors. The moorings will remain in position for 1.5 years. In addition, short-term hydrographic and mixing information will be collected using CTD, microstructure profiler, LADCP, towed ADCP and fast-sampling moored instruments like NIOZ thermistor strings.

3. LOCO-IW06 overview.

Internal wave mixing is thought to be the key in maintaining the general ocean circulation, induced about half by tidal motions and half inertial motions, which are generated following Earth's rotational geostrophic adjustment of sudden variations (e.g. due to wind). As waves do not mix, non-linear interaction between internal waves is assumed to transfer energy to smaller scales, eventually leading to wave breaking, and mixing. Near-inertial internal waves are considered to be important because of their strong shear, tidal motions because of persistent generation. Recent observations over the abyssal plain in the Bay of Biscay (van Haren et al., 2002) suggest that non-linear interaction between internal waves occurs not only in topographically-dominated areas, but, due to the presence of strong, deep-ocean nearinertial motions, also well away from sloping boundaries. During this cruise of LOCO the aim is on studying the variability with time of deep-ocean near-inertial and internal tidal motions at latitudes (Fig. 1) where the inertial frequency matches that of deterministic diurnal tides so that the latter may reinforce near-inertial motions. Also, at these 'diurnal critical latitudes' energy at the diurnal tidal/inertial frequency may be enhanced due to transfer of energy from semidiurnal tidal frequencies to smaller scales at half their frequency via parametric subharmonic instability (PSI). The associated reduction in vertical scales may imply larger shear-induced mixing.

Most moorings are above the abyssal plain to avoid topographic effects complicating the study of free internal wave motions, but some attention is focused on large-scale topography from a mooring near Great Meteor Seamount (GMS) and from small-scale sampling near its top where vigorous non-linear breaking waves can occur (van Haren, 2005a).

Fig. 1. Map of the Canary Basin (M. Hiehle). Main moorings are along 30°N and 23°W.

LOCO-IW moorings

Since October 2004, an array of four closely spaced (5-20 km) and long (~3.7 km) moorings LOCO11/2-14/2 are deployed near 30°N, 23°W in the Canary Basin (~5 km deep) halfway between the continental slope and the seamounts of the Mid-Atlantic Ridge (Fig. 2; Table 1). One mooring is at the foot of underwater vulcano GMS (30°N, 28°W). During LOCO-IW06 the latter mooring is relocated to a position West of Madeira. In addition, the four 'traveling' LOCO-IW moorings LOCO15-18 are deployed roughly around 28°W, between near 15-25°N to study in more detail variations in tidal and inertial energy south of the diurnal critical latitude (van Haren, 2005b).

Table 1. Mooring positions LOCO-IW04 from October 2004 and corresponding local inertial frequencies (with harmonic diurnal tidal names between brackets). Depths are echo sounder estimates. 1 cycle per day (cpd) = $2\pi/86400 \text{ s}^{-1}$.

LOCO11/2	30°00.016'N	027°48.627'W	4550 m 1.002738 cpd (K ₁)
LOCO12/2	30°00.070'N	023°08.250'W	5137 m 1.002738 cpd (K ₁)
LOCO13/2	27°36.781'N	023°07.750'W	4932 m 0.929536 cpd (O ₁)
LOCO14/2	28°47.994'N	023°07.103'W	4993 m 0.966137 cpd (M_1)

Fig. 2. Map of LOCO-IW04 mooring site (M. Hiehle).

As the aim is to study inertial internal wave motions near the latitude where their frequency is close to diurnal tidal frequencies, some of the moorings are located sharply at and very close to those corresponding to tidal harmonic frequencies (Table 1). The distances

between moorings are less than theoretical predictions on near-inertial wave propagation from the surface down- and equatorward in a flat ocean (Garrett, 2001; ~300 km). They correspond to theory on down- and poleward propagation of near-inertial waves focusing on a spherical shell (Maas, 2001). The former theory seems an overestimate as it predicts a shift of ~7% in inertial frequency between surface and bottom, whilst analysis on data from IfM Kiel (Siedler and Paul, 1991) shows vertical frequency shifts much less than this (van Haren, 2005b).

The moorings are designed to have minimal deflection in the vertical and horizontal, using ellipse shaped main buoyancy elements and a thin (6.5 mm diameter) mooring cable. For typical speeds of 0.25 m s⁻¹ the expected maximum deflection will be 30-40 m in the vertical and 350-450 m in the horizontal (or ~0.01%f when in latitudinal direction, well within the frequency resolution of 0.002 cpd or 0.2%f after 500 days of deployment). See Fig. 3. The measured motions are about a tenth of these estimated values (<5 m in vertical measured using pressure sensor and tilt meters). As a result the design is well suited for its purpose.

Fig. 3 Mooring deflection as computed by T. Hillebrand using program package designed by R. Dewey (UVic, Canada).

The moorings basically contain ~5 current meters that are more or less evenly distributed along the mooring line, so that currents and temperature can be monitored across a large range in the vertical (Appendix A). The distribution of the current meters is chosen after inspection of deep CTD-data obtained during previous cruises (Fig. 4). These profiles show a strong seasonal pychocline near 100 m, a nearly constant intermediate stratification between 100-1000 m, step-like density profile (partially due to double diffusive mixing) between 800-2000 m and slowly decreasing stratification below 2000 m, with sometimes negligible stratification (N = 0) between 4000 and 5000 m. Current meters are planned in the stepprofile layer and in the weak N \rightarrow 0 layer, besides the even distribution over the mooring line.

Fig.4. Density and 40 m smoothed stratification with depth measured during LOCO-IW03. In the right panel horizontal lines indicate proposed current meter locations; vertical line shows the extent of the 75 kHz ADCP.

In the top of two moorings a 75 kHz ADCP is deployed, so that ~25 m vertical shear (relevant for mixing induced by shear instability) is resolved over a range of ~500 m (Fig. 4).

The instruments are adapted for long-term monitoring (extra batteries and, for some, extra memory). They are programmed to last 2 years whilst sampling relatively fast, at least once/30 min, generally once/15 min, to resolve most of high-frequency internal wave motions in the deep ocean (where the buoyancy period is typically 60 min or more below 1500 m (and ~30 min at 1000 m). The bulk of the current meters are acoustic measurement devices, like the ADCP. All such devices rely for good data on particles (plankton, suspended sediments) in the water for sufficient s/n ratio. Presently, these instruments are robust in their performance, but, unfortunately, their deep-ocean s/n allows some limited internal wave band resolution of only up to 5(10) cpd (cycles per day). In contrast, mechanical current meters can resolve frequencies up to about their Nyquist frequency, but these instruments do rely on sufficiently strong currents (>0.02 m s⁻¹) and risk entanglements with floating material like lines etcetera.

With regards to the LOCO-IW04 mooring locations (Table 1) the following modifications have been made. All new names have extension /3. Mooring LOCO11/3 is moved from the foot of GMS to West of Madeira, to be well north of 30°N. Moorings LOCO12/3,

LOCO13/3, and **LOCO14/3** remain at the same latitudes but have slightly different longitudes (more into the basin). Mooring **LOCO14/3** now also carries an ADCP in its topbuoy. During LOCO-IW04 most instruments were acoustic current meters Aanderaa RCM11 (except for two mechanical Aanderaa RCM8); during LOCO-IW06 a balanced mix is restored between RCM11, acoustic Nortek AquaDopp and mechanical Valeport BFM-308. Additionally, **LOCO15/3 - LOCO18/3** are newly deployed in this area.

Additional measurements

CTD and LADCP measurements provide indirect estimates of deep-ocean shear and mixing (eddy diffusivity) all the way to the bottom, albeit to limited temporal resolution and to LADCP's limited vertical resolution (~25 m). These measurements are made near all moorings, on a transect roughly along 30°W (N-S), and near GMS. Additionally, in the upper 1900 m of the water column and mainly above GMS turbulence dissipation measurements are made using a completely refurbished FLYII microstructure profiler.

Above GMS a detailed internal tide generation and beam propagation study is performed, comprising of twice a section of CTD/LADCP and FLY measurements, a 25 hours cycle of yoyo-CTD and 50 hours of towed ADCP. During these measurements fast-sampling instruments are moored near the top of GMS on a bottom lander (Appendix A) with a 2GB-300 kHz ADCP, an accurate pressure sensor, NIOZ thermistorstring #3, 2 current meters, and, on a separate mooring, NIOZ2-thermistor string with 2 current meters.

References:

- Garrett, C., 2001. What is the "Near-Inertial" band and why is it different from the rest of the internal wave spectrum? J. Phys. Oceanogr., 31, 962-971.
- Maas, L.R.M., 2001. Wave focusing and ensuing mean flow due to symmetry breaking in rotating fluids, J. Fluid Mech., 437, 13-28.
- Siedler, G., and U. Paul, 1991. Barotropic and baroclinic tidal currents in the eastern basins of the North Atlantic. J. Geophys. Res., 96, 22,259-22,271.
- van Haren, H. 2004. LOCO-IW04-Canary Basin: R.V. Pelagia cruise 64PE231, 14 October-07 November 2004, NIOZ, 39 pp.
- van Haren, H., 2005a. Details of stratification in a sloping bottom boundary layer of Great Meteor Seamount. Geophys. Res. Lett., 32, L07606, doi:10.1029/2004GL02298.
- van Haren, H., 2005b. Tidal and near-inertial peak variations around the diurnal critical latitude. Geophys. Res. Lett., 32, L23611, doi:10.1029/2005GL024160.
- van Haren, H., L. Maas and H. van Aken, 2002. Construction of internal wave spectrum near a continental slope. Geophys. Res. Lett., 29(12), 10.1029/2001GL014341.
- van Haren, H., R. Groenewegen, M. Laan, B. Koster, 2005. High sampling rate thermistor string observations at the slope of Great Meteor Seamount. Ocean Science, 1, 17-28, SRef-ID: 1812-0792/os/2005-1-17.

4. Participants.

Institute	Name
FYS	Hans van Haren (PI)
FYS	Kees Veth
FYS	Theo Hillebrand
FYS/DMG	Margriet Hiehle
FYS	Theo Gerkema
FYS	Eline Verwer
MTE	Martin Laan
MTM	Lorendz Boom
MTM	Yvo Witte
IMAU Utrecht	Eleftheria Exarchou
IMAU Utrecht	Pieter van Breevoort
IMAU Utrecht	Chrysanthi Tsimitri

NIOZ departments

FYS	physical oceanography
MTE	electronics
MTM	sea technology
DMG	data management group

(Photo: C. Tsimitri)

5. Data acquisition and instrumentation.

a. LOCO-IW06 (/3) moorings (Appendix A for diagrams).

All eight large moorings (LOCO11/3-18/3) have two ellipse-shaped buoyancy elements near the top, of which the upper also holds an ARGOS-satellite beacon. About 5 m above the steel weight (500-700 kg) two IXSea acoustic releases are mounted. Most current meters (CM) are acoustic Aanderaa RCM-11 and Nortek AquaDopp, with the upper mainly being a mechanical Valeport BFM308. We had problems with this current meter in the past (leakage, explosion, but it seems modified now and guranteed to 2000 m). As the moorings will be in position for 1.5 years, the RCM-11 sample at once per 1200 s (20 min) or 900 s (15 min; this is possible, but not all machines are modified to have this option), the Valeport at once per 5 min and the AquaDopp at once per 15 min, with burst sampling at 1 Hz once per day.

Moorings LOCO11/3, 12/3, 14/3, 16/3 and 18/3 contain an upward looking 75 kHz ADCP in the top buoy. The range of the ADCP will cover 400-500 m (500-600 m set) of the water column every 10 m vertically, between 1000-1500 m (Fig. 4). It samples once per 1800 s (30 min). Mooring LOCO11/3 holds 54 NIOZ-3 sensors on a 145 m long cable between the two ellipse buoys. Therefore, the ADCP is mounted downward looking, with a range between ~1350-1850 m.

Positioning of moorings is done like during LOCO-IW03 and IW04: starting about 3-4 km East or West of the intended longitude and sailing along a fixed latitude at a speed varying between ~0.5 knot (when instruments are attached and put overboard) and ~1.5 knots (when line is paid out). Release of anchor can be suspended by continuing to sail to the intended position. On average the final position of the anchor is about 700 m behind the ship's position at the moment of release of the anchor, because of the retarded swing and the bent line during towing (Fig. 5), and within ± 100 m north/south of the sailed latitude. The drop speed of the weight reaches nearly 3 m s⁻¹, before slowing down to just over 1 m s⁻¹ when the buoys are pulled under water, so that the bottom landing is fairly smooth.

Fig. 5. Estimated mooring line at moment of release of anchor (acc. progr. R. Dewey,Uvic Canada).

Photo (P. van Breevoort): Elliptically shaped buoys in the mooring line.

b. DOC moorings

DOC06-1 is a separate mooring with the NIOZ-3 high-sampling rate thermistor string, which is moored for the first time at ~550 m on the eastern slope of Great Meteor Seamount (30° N, 28° W). NIOZ3 consists of 110 independently operating temperature sensors (~0.2 mK accuracy) that can sample 1.5 years at a 1-Hz rate. Their clocks are synchronized once per 5-10 hours using a high-precision clock at the top-end of the cable. The instrument, below a ~170 kg elliptic buoy and a Nortek CM is attached to NIOZ mix-BB002 bottom lander holding a 300 kHz RDI Sentinel, with 2 GB memory and 2 extra battery containers, a precision SBE53 pressure sensor and a Nortek CM. The purpose of the equipment is to sample during 15-20 days at a fairly high temporal (0.5-1 Hz) and spatial (0.5 m) resolution the water temperature and currents above a deep steep slope. The pressure sensor is used to attempt to resolve non-hydrostatic pressure (typically 100 Pa compared to 10^7 Pa hydrostatic pressure) near the bottom at a rate of 0.3 Hz. In order to associate the temperature variations to density variations a proper estimate of the temperature-density relationship is obtained by some local CTD calibration sampling.

Photo(M. van Duijn): NIOZ bottom lander mixBB-002.

DOC06-2 is a separate mooring with the NIOZ-2 fast thermistor string (van Haren et al., 2005), which is deployed together with 2 Valeport CM on the southern slope of Great Meteor Seamount (29.6°N, 28°W, 460 m.

c. Shipborne sampling

The Pelagia CTD/Rosette system contains a Seabird 911-*plus* Conductivity Temperature Depth sensor, with a Seapoint STM Optical BackScatterer (OBS). The CTD samples at a 24 Hz rate. The Rosette frame holds a down- and an upward looking 0.3 MHz RDI ADCP, together forming the LADCP.

The aim of the measurements with the FLY microstructure profiler is to determine the vertical structure and distribution of several turbulence quantities at all the stations. The measurements were done with a free-falling velocity shear probe (type FLY-II, originally manufactured by Sytech (Canada), but internally completely re-designed by NIOZ-technicians).

d. Deep towed ADCP's

During LOCO-IW06 50 hours are used to attempt to monitor internal tidal wave beams above steep topography using a deep-towed vehicle equipped with two 75 kHz RDI ADCP's (one up-, other down-looking). This neutrally buoyant vehicle is attached to a 1500 kg pistoncorer weight and an extra 1000 kg weight with pressure sensor that are towed using a Kevlar + electric cable. The ADCP's store data internally. Previous tests showed the tolerance of ship' speed (± 0.1 knot) translated in depth variations (± 10 m) of the instrument package, provided the effects of currents is low. The aim is to cover a range between 0-1400 m depth and between 300-3300 m water depth to extend previous measurements (van Haren, 2004). We focus on the southern side of GMS, with possibly enhanced diurnal tide.

Photo (M. Hiehle): Deep-towed body with two ADCP's.

e. Argo floats

KNMI (Royal Netherlands Meteorological Institute) asked us to deploy four long-term Argo-drifters, which measure a CTD-profile between surface-2000 m every week whilst freely drifting at 1000 m in between profiles.

6. Daily summaries of LOCO-IW06.

Fig. 6. LOCO-IW06 cruise track and activity locations (M. Hiehle)

Wednesday 17 May

16 UTC departure from Santa Cruz, Tenerife. Good weather conditions. Soon first sightings of dolphins.

Thursday 18 May

NE5. Transit to Canary Basin. 16 UTC first CTD/LADCP.

(Photo: M. van Duijn)

Friday 19 May

ENE4. 08 UTC Successful deployment mooring LOCO12/3. In the afternoon followed by successful recovery LOCO12/2. ARGO float (KNMI) deployed near 30N, 24W. 20 UTC calibration thermistorstrings. Of each string about 10% of the sensors fail (90% good).

Saturday 20 May

NE4-3. 19 UTC. Start CTD/LADCP transect up the eastern slope of GMS (along 30N). At the third station FLY winch shows problems.

Sunday 21 May

NNE3. 08.45 UTC. Deployment of DOC06-2, followed at the end of the morning by deployment of DOC06-1. 16 UTC Test Towed-ADCP. 18.05 UTC start 50h transect Towed ADCP in direction 213° from the top of GMS above the SSW slope.

Monday 22 May

N3. Continuation Towed-ADCP. At ~19 UTC the vehicle is lowered to 800 m depth.

Tuesday 23 May

ENE3. ~20 UTC. End of Towed-ADCP, 12 M (22 km) from the starting point. Set course to mooring location 14.

(Photo: C. Tsimitri)

Wednesday 24 May

ENE6. 14 UTC. CTD/LADCP and FLY. Continue steaming to mooring site. Around 29N, 27W a Red-billed Tropicbird, presumably from Cape Verde (according to Kees Camphuysen, NIOZ), stays with us a couple of hours during the afternoon.

Thursday 25 May

ENE5. 08 UTC. Deployment mooring LOCO14/3. By 17 UTC first attempt to contact acoustic releases mooring LOCO14/2. At a distance of about 7 km it seems contact is established and release commands are given. An hour later we know that false echos were heard. An extensive area of some 30 km across is searched visually and, foremost, acoustically until midnight, in vain. Set course to mooring LOCO13/2.

Friday 26 May

ENE4. 04 UTC. Argo float (KNMI) put overboard 28N, 23W. 07 UTC recovery of mooring LOCO13/2. 16 UTC deployment of mooring LOCO13/3. Return to position of mooring LOCO14/2.

Saturday 27 May

NE2-4. Entire day spent attempting to dredge the mooring LOCO14/2. By 22 UTC attempts are stopped. Negative result. We consider the mooring as lost, although we are uncertain of its existence.

Sunday 28 May

Var2. 15 UTC. Argo float (KNMI) put overboard 26N, 24.5W. 18 UTC deployment of mooring LOCO15/3.

Monday 29 May

N2, springtide. 09 UTC. Argo float (KNMI) put overboard 24N, 26W, sequence of 3 CTD/LADCP and 1 FLY for some open ocean eddy diffusivity estimates statistics.

Tuesday 30 May

Var1. 08 UTC deployment of mooring LOCO16/3, CTD/LADCP. Two more sightings of Red-billed Tropicbird, regular sightings of flying-fish (their favorite catch).

Wednesday 31 May

ENE4. 07 UTC deployment of mooring LOCO17/3, CTD/LADCP. Group of three Red-billed Tropicbird around the ship.

Thursday 01 June

ENE3, partly cloudy, humid. Reach southernmost position during cruise. 17 UTC deployment of mooring LOCO18/3, CTD/LADCP. Kees launches his 'flessenpost' as

promised during the 2005 National Science Contest. We head back to Great Meteor Seamount.

Friday 02 June

NNE5. 18 UTC CTD/LADCP underway (17° 30'N).

Saturday 03 June

NE5. 21 UTC shortage noticed in CTD-winch cable. As resistance measurements show that it is at the far end, it us decided to wheel out the entire 6300 m via de stern, whilst steaming \sim 4 knots. A 50 kg weight is attached to the cable. Spooling is slow between 1500-3500 m.

Sunday 04 June.

NNE1-2. 02:15 UTC CTD-cable on board again, 25 m cut, shortage appeared in the very last turn. 08 UTC CTD/LADCP resumed.

Monday 05 June

N3. 19 UTC CTD/LADCP (27° 30'N).

Tuesday 06 June

NNW4. 10:30 UTC Multibeam mapping across mooring DOC06/2. 12 UTC start CTD/LADCP and FLY transect on SSE side of GMS (6 stations along towed-ADCP track).

(Photo: C. Tsimitri)

Wednesday 07 June

Var2. 01:30 UTC again shortage in CTD-winch cable. Same procedure as before, except that the first half hour we head for deeper water at full speed. During cable cut and repair now also possible sharp edges on the inside of the drum are smoothed. 08 UTC CTD-

cable back on deck. 08:40 UTC start 25-hours yoyo-CTD/LADCP station above 2000 m, in the centre of the towed-ADCP track.

Thursday 08 June

NNE3. 09:15 UTC end of yoyo-CTD/LADCP. 10 UTC recovery mooring DOC06/2. 13 UTC recovery mooring DOC06/1. 17 UTC recovery mooring LOC011/2. All, without any problems. For recovery of moorings including a thermistor string a new drum is constructed (photo previous page).

Friday 09 June

NW2. 13 UTC CTD/LADCP (31° 30'N).

Saturday 10 June

NW3. 07:30 UTC CTD/LADCP (33° 00'N). 11 UTC deployment LOCO11/3. For the first time both buoys are seen at the surface after the weight is dropped. Second buoy dives down quickly.

Sunday 11 June

16 UTC (17 LT). Arrival Funchal, Madeira.

(Photo: E. Exarchou)

7. Scientific summary and preliminary results

a. Long-term mooring recoveries.

All recoveries were done by approaching the buoy from the starboard side, with a line from the stern-winch laid out on the starboard side to the side-winch. From the side-winch deck a small dredge was thrown to catch the line between a small float and the surface buoy. This 20 m line was sufficient and easy to catch. The detachment of the large elliptical buoys from the mooring line was fairly easy due to the ~1 m chain below the upper buoy and on both sides of the inline buoy.

a.1. Moorings LOCO11/2-13/2

Three out of four moorings deployed during LOCO-IW04 were successfully recovered. The instrumental performance of these three moorings LOCO11/2-13/2 was excellent (see Table 2). No bio-fouling was found, only one ARGOS-satellite beacon flooded and just minor corrosion was observed at IXSea (Oceano) acoustic releases.

One ADCP worked the entire intended period. The other stopped after 14 months, because the instrument was programmed 'sharply' and one battery pack turned out bad. Both instruments covered all of their range at fairly high signal-noise ratio as scatterers amounts were still fairly abundant between 800-1300 m.

The RCM-11 and the one RCM8 (from LOCO11/2) all worked as expected, providing good data over the entire period of 19 months, except for one T-sensor of an RCM-11 that was set in the wrong temperature range.

All 6 organic contaminant samplers (Fig. 7; details in van Haren, 2004) were successfully retrieved from moorings **LOCO12/2** and **LOCO13/2**. They were stored deep-frozen.

The mooring design will not be changed, as the present taught-wire design is very successful: we learned from the tilt- and pressure sensors the ADCP's that the moorings never tilted more than 2°. As a result maximum deviations due to current drag were 2 m in the vertical and 130 m in the horizontal, which is extremely good and much better than model estimates (Fig. 3). In addition, pressure decreased some 1-4 m gradually over time. This is attributed to stretching of the mooring, by about 1 mm/m, over a period of about 100 days.

Fig. 7. Contaminant Sampler cage: sideview (left) and view from above/below (right).

A:C,R,T; R: C,R,T,p,tilt. (C=speed, R=direction, T=temperature, p=pressure).								
Moorings dep	loyed between 20-	24 Octo	ber 2004, recov	ered during LOC	CO-IW06			
Mooring	Instrument	Serial#	f depth [m]	sampl. int. [s]	remarks			
LOC011/2	R 75 kHz ADCP	3174	1345	1800	TML 28m; 14 mon.			
	A RCM11	187	1460	900	T low			
	A RCM8	11826	2260	1800	T low			
	A RCM11	188	3015	900	T arctic			
	A RCM11	189	3760	900	T arctic			
	A RCM11	190	4355	900	T arctic			
LOCO12/2	R 75 kHz ADCP	3175	1455	3600	TML 40m			
	LPDE/SPMD	20	1456		contam. meter			
	A RCM11	416	1550	1800	T low			
	A RCM11	414	2350	1800	T arctic			
	A RCM11	405	3100	1800	T arctic			
	LPDE/SPMD	21	3102		contam. meter			
	A RCM11	415	3850	1800	no T			
	A RCM11	406	4455	1800	T arctic			
	LPDE/SPMD	22	3102		contam. meter			
LOCO13/2				AI	RGOS beacon flooded			
	LPDE/SPMD	23	1345		contam. meter			
	A RCM11	417	1435	900	T low			
	A RCM11	404	2035	900	T arctic			
	A RCM11	408	2785	900	T arctic			
	LPDE/SPMD	24	2795		contam. meter			
	A RCM11	192	3535	900	T arctic			
	A RCM11	193	4455	900	T arctic			
	LPDE/SPMD	25	4965		contam. meter			

Table 2. Data return of IW04 moorings. CM-abbreviations: A=Aanderaa; R=RDI; Sensors, A:C,R,T; R: C,R,T,p,tilt. (C=speed, R=direction, T=temperature, p=pressure).

The perfect positioning of the moorings, so that positions are known to within 10 m horizontally and less than 100 m from intended latitude, makes any changes in inertial frequency easily verifiable to within the spectral resolution. Also, the 2 s variation in RCM-11 clocks falls well within the spectral resolution. This is verified using the major semidiurnal tidal constituent M_2 . Near GMS, sample spectra show common internal wave kinetic energy spectra with familiar large peaks at tidal, inertial and higher harmonic frequencies (Fig. 8a). With increasing depth, stratification decreases and so does the kinetic energy across the entire spectrum (down to the white noise level). This is accompanied by a shift in inertial peak frequency. In general the known internal wave polarization was well-measured (Fig. 8b), the shift near the inertial frequency is unlikely due to barotropic diurnal tidal currents and is presently investigated. Peculiar is the large change in semidiurnal tidal polarization between the two depths that is probably related to topography.

Fig. 8. a. Kinetic energy spectra of current meters near 1400 m (blue) and 3000 m (black) in mooring LOCO11/2. In red temperature from 3000 m. b. Smoothed rotational spectrum of currents in a. In green the symmetric theory for symmetrically forced waves, in the internal wave band for frequencies larger than f (van Haren, 2003 for definitions).

a.2. Deep-dredging LOCO14/2

During LOCO-IW06 no contact could be made with the acoustic releases of LOCO14/2. It was decided to dredge for it (at depths greater than 5000 m) using a weight with 3 dredge anchors on one end, 800 m steel cable, a second weight, which led to the Kevlar cable of the Kley France winch. The idea was to put the two weights and the 1000 m cable at the sea floor and then sweep passed the original mooring location. This was successfully done twice, in slightly different manners, but the mooring was not (partially) retrieved. It may not have been at position... No further attempts were undertaken.

b. Short-term mooring deployment and retrieval

Bottom lander **DOC06-1** was moored for 18 days near the top of the eastern slope of Great Meteor Seamount (Table 3). All instruments worked nearly flawlessly. The NIOZ-3 thermistor string (101 sensors at 0.5 m intervals) returned 90% good data during the entire period (Fig. 9). The CM, the ADCP (80 depth levels 1 m intervals) and the pressure sensor provided the full suite of data.

In contrast, nearly all instruments on mooring **DOC06-2** failed, as NIOZ-2 only gave 14 h of data due to renewed recorder problems, whilst the two Valeport CM were programmed sampling too fast for their like.

Fig. 9. Nearly 17 minutes of NIOZ-3 data in 50 m above the bottom, showing passage of large overturning wave in. The horizontal lines are partially bad sensors and partially poor calibration (that needs further treatment using a second calibration).

Table 3. Moored instruments details short-term deployment (A=Aanderaa; N=Nortek).											
LOCO-IW	<i>LOCO-IW04 mooring between</i> 21/05/06 - 08/06/06 at 30°00.052'N 028°18.802'W 549 m										
Mooring	Instrument	Serial#	depth [m]	sampl. int. [s]	remarks						
DOC06-1	N AquaDopp	4/02	400	5							
	FT-string	NIOZ-3	548.5(lows.)	1	5% sens. fail; 5% need recal.						
	300 kHz ADCF	° 6227	544.5(fb)	2	TM2.6 m						
	N AquaDopp	1/02	547.25	5							
	SBE53 BPR	97179	547.25	3	modified version						

c. Long-term mooring deployments (Appendix A for mooring diagrams)

The mooring deployment from the stern worked again fine due to proper preparation and good weather conditions.

c.1. Moorings LOCO11/3-18/3

Eight long (~3.7 km) moorings were deployed between 15-33°N roughly along 28°W (Fig. 6; Table 4). Positioning of moorings is done as during LOCO-IW04: starting ~3-4 miles East or West of the intended longitude and sailing along a fixed latitude at a speed varying between ~0.5 knots (when instrument is attached and put overboard) and ~1.5 knots (when line is paid out). Release of anchor is sometimes suspended by continuing to sail to an

intended position. On average, the final position of the anchor was about 500 m behind the ship's position at the moment of release of the anchor due to the retarded swing and the bent line during towing (Fig. 10). The final position was always well within ± 100 m north/south of the sailed latitude.

Table 5 gives an overview of the instruments, their sampling rates and their positions in the moorings.

Table 4. M harmonic d	ooring position iurnal tidal nam	is LOCO-IW06, nes between brac	ARGOS a kets). Dept	und local inertial frequents in the second sec	uencies f (with stimates.
Mooring	Latitude	Longitude	depth	f	ARGOS
LOCO11/3	33°00.010'N	022°24.406'W	5274 m	1.092260 cpd	22686
LOCO12/3	29°59.948'N	023°04.841'W	5139 m	1.002711 cpd (K ₁)	22621
LOCO13/3	27°36.737'N	024°29.802'W	5146 m	0.929510 cpd (O ₁)	22312
LOCO14/3	28°47.992'N	023°59.620'W	5110 m	0.966142 cpd (M ₁)	23007
LOCO15/3	25°29.958'N	024°52.696'W	5158 m	0.863367 cpd	22580
LOCO16/3	22°29.615'N	027°18.965'W	5396 m	0.767255 cpd	21467
LOCO17/3	19°59.977'N	028°48.383'W	4908 m	0.685900 cpd	20378
LOCO18/3	14°59.870'N	030°00.304'W	5390 m	0.518981 cpd	23004

LOCO 14 IW just before launch at shipspeed of 0.5 mile

Fig. 10. Estimated mooring line at moment of release of anchor (computed by T. Hillebrand using program by R. Dewey, Uvic Canada).

(Photo: P. van Breevoort). Preparation of CM.

Mooring	Instrument	Serial#	depth [m]	sampl. int. [s]	remarks
LOCOTI/3	R /5 KHZ ADCP	31/4 NIOZ2	1350 1400(1c)	1800	60 10m bins; DOWN look.
	F1-string	NIOZ5	1490(IS)	1	54 sensors at 2.5 m intervals
	A RUMIT	100	1000	900	1-LOW
	N AquaDopp	4/02	2300	900	30 sam diag/day
	A RCM11	189	3050	900	I-arctic
	A RCM11	1/02	3800	900	1-arctic
	N AquaDopp	1/02	4550	900	30 sam diag/day
LOCO12/3	R 75 kHz ADCP	5945	1250	1800	50 10m bins; UP look.
	A RCM11	200	1350	1200	T-LOW
	A RCM11	48	2150	1200	T-arctic
	A RCM11	240	2900	1200	T-arctic; 1800?
	A RCM11	123	3650	1200	T-arctic
	A RCM11	36	4250	1200	T-arctic
00013/3	V BFM-308	20643	1150	300	12x5 s
10 0 0 10/0	V BFM-308	20636	1650	300	12x5 s
	N AquaDopp	2/04	2350	900	30 sam diag/day
	A RCM11	2/04 406	3100	900	T_arctic
	A RCM11	400	3850	900	T-arctic
	N AquaDopp	2/02	4450	900	30 sam diag/day
	К Ациарорр	2/02	44,00	900	50 sam diag/day
	R 75 kHz ADCP	3175	1650	1800	60 10m bins; UP look.
	V BFM-308	23121	1750	300	12x5 s.
	N AquaDopp	1/04	2450	900	30 sam diag/day
	A RCM11	416	3200	900	T-arctic
	A RCM11	414	3950	900	T-arctic
	N AquaDopp	3/02	4550	900	30 sam diag/day
.0C015/3	V BFM-308	23120	1497.5	300	12x5 s.
	V BFM-308	20637	1500	300	12x5 s.
	N AquaDopp	8/02	2200	900	30 sam diag/day
	A RCM11	202	2950	1200	T-arctic
	A RCM11	132	3700	1200	T-arctic
	N AquaDopp	7/02	3700 4450	900	30 sam diag/day
	К Ациарорр	1/02	4430	900	50 sam utag/uay
.OCO16/3	R 75 kHz ADCP	3550	1500	1800	60 10m bins; UP look.
	A RCM9	341	1600	1200	T-LOW
	N AquaDopp	20126-3	2300	900	30 sam diag/day
	A RCM11	404	3050	900	T-arctic
	A RCM11	405	3800	900	T-arctic
	N AquaDopp	6/02	4600	900	30 sam diag/day
00017/3	V BFM-308	20641	1550	300	12x5 s.
	N AquaDopp	20126-4	2250	900	30 sam diag/day
	A RCM11	408	3750	900	T-arctic
	A RCM11	417	4350	900	T-arctic
00019/2	D 75 LU- ADOD	6779	1400	1900	60 10m hings UD 11-
200018/3	K / 5 KHZ ADCP	0//8	1400	1800	ou ium bins; UP look.
	A RCM11	44	1500	1200	1-LOW; leak. in MZC
	N AquaDopp	20126-1	2200	900	30 sam diag/day
	A RCM11	192	2950	900	T-arctic
	A RCM11	193	3800	900	T-arctic
	N AquaDopp	20126-2	4600	900	30 sam diag/day

d. CTD sampling

The CTD operations were 'normal'. The instrument, deck unit and the winch generally worked very fine. However, due to the great depths we were working at (>5500 m, with occasionally 5800 m cable out) and the relatively short CTD-cable (~6300 m) we experienced shortage in the cable twice. This happened when the last layer of turns on the drum was visible. Shortage occurred at the turn just before the cable went through the side of the drum. Due to swift action of crew and technicians the entire cable was paid out to sea via the stern whilst steaming. Entire operation of repair was done within 6 hours.

The density-depth profiles were quite simple as before, with a main pycnocline between 100-1100 m and weak stratification below 1500 m (Fig. 4). In detail down- and upcast occasionally showed differences in steppiness of the profiles (with typical step sizes of about 10 m only), evidence of high-frequency wave activity or short-scale layering. In the salinity profiles (not shown) Mediterranean Sea water was visible between 1000-1500 m, evidence of remnants of 'Meddies'. Below this depth down to about 2000 m rather frequently varying stepstructures and overturning were observed. Along a North-South transect the small-scale variations show a weak tendency for enhancement at 29 and 30°N (between 2000-3000 m). Variations are also small when the present profiles are compared with those obtained during LOCO-IW03 and IW04. Extremely weak stratification (N ~ f; ~0.7 10^{-4} s⁻¹) was only found very near the bottom. Details of variation in N and steppiness across the critical diurnal latitude require further investigation.

Photo (P. van Breevoort): CTD-cable repair.

e. LADCP (by C. Veth)

The LADCP-system has been applied during all regular CTD-casts. The two ADCP's are positioned in a "Janus configuration", which means that one is looking downward and the other upward from the CTD-frame. With this system water velocity profiles were measured from surface to bottom for depth intervals of 20m (or minimally 8 m). In the beginning of the cruise some technical problems were encountered that have been solved after replacement of

the communication cables between the two ADCP's and the battery pack. Probably a technical fault in one of these cables caused a serious voltage drop of the power necessary for the instruments to function.

Spatial shear spectra derived from the LADCP velocity profiles will be used to estimate the vertical turbulent diffusivity Kz. Although this method is rather crude, relative comparison can be made for profiles at different latitudes and bottom topography circumstances. The figure shows the series of velocity profiles at the 24-hours yo-yo-station at the GMS flank.

f. Yoyo-CTD/LADCP (by T. Gerkema)

Over a period of 24 hours, in the centre of the towed-ADCP track above GMS (see Section 7.h) the ship was kept at a fixed position whilst repeatedly yoyo-ing the CTD-LADCP system. The purpose was to establish internal wave fluxes from these complete surface-bottom high-detailed profiles near an important internal tidal wave source. The computed semidiurnal tidal flux-estimates from these data amount 2.5±0.1 kW/m and compare very well (to within 10%) with flux estimates from a numerical model. The contoured CTD-data (Fig. 11) surprisingly showed a layering in dominant semidiurnal tidal motions (upper 600 m), above less-well discernible dominant diurnal tidal motions (600-1200 m) and dominant fourth diurnal motions (1200-2000 m).

Fig. 11. Yoyo-CTD variation data: 20 profiles in 24 hours. a. Salinity. b. Temperature.

g. FLY microstructure profiler (C. Veth & M. Laan)

At a number of selected stations microstructure measurements were done with the completely modified FLY-II. The older version of the instrument was limited by the

instrumental noise, probably vibrations, but acceleration detectors have added to the system to determine the instrumental motions during a drop. Software to apply these acceleration data to subtract instrumental vibrations from the turbulence signal is under construction.

With the microstructure data from the FLY the rate of dissipation of turbulent kinetic energy ε can be calculated. This quantity, combined with data from the CTD-system and the LADCP-velocity profiles will give insight in the turbulent structure of the water column at the station. For that reason Fly drops have always been performed in combination with a CTD/LADCP-cast.

In a technical/operational sense the FLY worked well. It was necessary to replace the shear sensors, but this was an expected replacement, because the shear sensors have a limited lifetime. The handling of the winch system with line-puller worked without serious problems. Due to rescaling of the pressure sensor, it was possible to go to deeper depths than before. The new depth record with the FLY is now over 1900 m. The sensors did not show pressure damage from dropping to this depth.

The winch system for the FLY has performed well from the moment the correct linepulling speed was found. This line-pulling speed is depending on the fall speed of the FLY profiler and the speed of the ship. The weather was generally fair enough to have good control over the very low ships speed during lowering of the FLY.

(Photo P. van Breevoort: launching FLY)

h. Deep-towed ADCP's above GMS

A sequence of the deep towed-ADCP was performed for a consecutive period of 24 hours (4 semidiurnal, or 2 diurnal, tidal periods) above the steep south-western slope of GMS. According to previous studies by Mohn and Beckmann (2002) the southside of the seamount experienced strongly enhanced tidal motions, with largest enhancements for diurnal tidal components. The ADCP's in the towed body were set to sample 7 pings of 1 s every 20 s, with starting times 10 s apart.

The entire procedure of sailing a towed body is rather complex, and the manual resulting from previous tests is strictly followed here (van Sebille, Loeve and Huisman, 2004). Tow speed was 3 knots and two sections of \sim 12 km length were sampled 11 times each. The

towing depths were 200 and 800 m. Due to the steepness of the slope, the tow transects overlapped by about 2 km. The direction of the transect was 213°TN (return: 33°TN), with starting point at 29°41.12′N, 28°23.34′W (water depth 292 m). Final water depth was ~3300 m. During the entire measurement period, weather conditions were indeed very favourable.

Preliminary inspection of the data learned that all instruments worked well. Instrumental tilt was never more than 5° ensuring the good data quality and sufficient depth range. During the towing with the frame at a depth of 200 m the online depth variations were generally within reasonable limits. However, although previous tests showed exactly the tolerance of ship' speed translated in depth variations of the instrument package and sailing speed was generally kept constant within the preferred tolerance of ± 0.1 knots, vertical variations sometimes were as large as ± 40 m when the towed body was at 800 m. Presumably, deep currents were substantial ~0.4 knots, thus off-setting the towed body. This stressed that in future tows on-line depth knowledge is necessary for commanding ship speed variations. Such information was not available here despite the electric cable in the Kevlar, due to electrical connections problems. Likewise, the vessel mounted ADCP (capable of surveying between 0-600 m) was not available due to poor installation.

Nonetheless, already in the raw towed-ADCP data a banding of enhanced and weakened currents can be seen, but it is too early to conclude observational evidence of internal tidal beams.

More References

- Mohn, C., A. Beckmann, 2002. The upper ocean circulation at Great Meteor Seamount. Ocean Dyn., 52, 179-193.
- Sebille, E., D. Loeve, S. Huisman, 2004. Draaiboek Towed Body, NIOZ/IMAU, 16 pp (in Dutch).
- van Haren, H., 2003. On the polarization of oscillatory currents in the Bay of Biscay. J. Geophys. Res. 108(C9), 3290, doi:10.1029/2002JC001736.

(Photo: E. Exarchou)

8. Achnowledgments

On behalf of the participants, I would like to thank captain Kees de Graaff and the crew of R.V. Pelagia for the very pleasant cooperation. Funding by the Netherlands Organization for the advancement of Scientific Research and BSIK is gratefully acknowledged.

July 2006,

Hans van Haren

(Photo: Y. Witte)

LOC011/3

LOCO-13/3

LOCO-15/3

LOCO-17/3

37

Station Cast	Туре	Event	date 200)6 time	Latitude	Longitude	Depth m name mooring
1 '	1 CTD	Begin	May 18	16:11:02	29.50770	-20.51732	4707
2 '	1 Mooring deployment	ground	May 19	11:50:14	29.99745	-23.09137	5140 LOCO 12/3
3	1 Mooring recovery	released	May 19	13:21:34	29.99982	-23.13892	5140 LOCO 12/2
4 <i>'</i>	1 CTD_Thermistor	Begin	May 19	20:36:01	30.00422	-23.97502	5292
4 2	2 ARGO float	Begin	May 19	21:52:13	29.99893	-23.98573	5292
4 3	3 CTD	Begin	May 19	22:02:36	29.99948	-23.98708	5292
5 [~]	1 CTD	Begin	May 20	18:49:52	30.00030	-28.00038	3963
5 2	2 FLY	Begin	May 20	21:17:48	29.99997	-28.00240	3963
6 <i>°</i>	1 CTD	Begin	May 20	23:14:58	29.99998	-28.15075	2993
6 2	2 FLY	Begin	May 21	01:09:06	30.00052	-28.15147	2981
7 ^	1 CTD	Begin	May 21	02:41:06	29.99998	-28.24998	2530
7 2	2 FLY	Begin	May 21	03:47:25	29.99993	-28.25007	2530
8	1 CTD	Begin	May 21	04:59:53	29.99965	-28.29987	575
8 2	2 FLY	CANCEL	May 21	05:23:25	29.99968	-28.30148	581
9 ′	1 CTD	Begin	May 21	05:51:05	29.99988	-28.34945	430
10 ⁻	1 CTD	Begin	May 21	06:31:42	29.99998	-28.39948	332
11 [·]	1 Lander deployment	ground	May 21	09:12:16	30.00183	-28.31418	547 DOC 6/1
12 [·]	1 Mooring deployment	ground	May 21	12:00:16	29.68388	-28.36428	419 DOC 6/2
13 ⁻	1 Towed_ADCP	SOL 1	May 21	18:05:23	29.68300	-28.38962	297
13 ⁻	1 Towed_ADCP	SOL 2	May 21	20:30:10	29.59227	-28.46057	
13 ⁻	1 Towed_ADCP	SOL 3	May 21	22:52:26	29.68300	-28.38945	302
13 ⁻	1 Towed_ADCP	SOL 4	May 22	01:14:41	29.59222	-28.46052	2390
13 <i>*</i>	1 Towed_ADCP	SOL 5	May 22	03:36:48	29.68307	-28.38928	293
13 ⁻	1 Towed_ADCP	SOL 6	May 22	05:59:16	29.59212	-28.46042	2355
13 ⁻	1 Towed_ADCP	SOL 7	May 22	08:23:52	29.68297	-28.38933	293
13 ⁻	1 Towed_ADCP	SOL 8	May 22	10:45:09	29.59222	-28.46063	2395
13 ⁻	1 Towed_ADCP	SOL 9	May 22	13:06:30	29.68313	-28.38987	293
13 ⁻	1 Towed_ADCP	SOL 10	May 22	15:29:37	29.59215	-28.46093	2385
13 [·]	1 Towed_ADCP	SOL 11	May 22	17:53:00	29.68305	-28.38972	293
13 ⁻	1 Towed_ADCP	SOL 12	May 22	20:01:01	29.59248	-28.45797	2329
13 [·]	1 Towed_ADCP	SOL 13	May 22	22:24:14	29.52875	-28.52382	2696
13 ⁻	1 Towed_ADCP	SOL 14	May 23	00:57:09	29.59255	-28.45792	2317
13 ⁻	1 Towed_ADCP	SOL 15	May 23	03:19:55	29.52865	-28.52410	3371
13 <i>`</i>	1 Towed_ADCP	SOL 16	May 23	05:48:22	29.59247	-28.45797	2323
13 <i>`</i>	1 Towed_ADCP	SOL 17	May 23	08:09:30	29.52867	-28.52382	3365
13 ⁻	1 Towed_ADCP	SOL 18	May 23	10:40:44	29.59253	-28.45803	2390
13 ⁻	1 Towed_ADCP	SOL 19	May 23	13:03:10	29.52875	-28.52412	3365
13 <i>`</i>	1 Towed_ADCP	SOL 20	May 23	15:36:09	29.59257	-28.45803	2323
13 ⁻	1 Towed_ADCP	SOL 21	May 23	17:58:32	29.52908	-28.52533	3365
13 ⁻	1 Towed_ADCP	SOL 22	May 23	20:36:42	29.59245	-28.45812	2310
14 ⁻	1 CTD	Begin	May 24	14:08:44	29.11673	-26.08725	5042
14 2	2 FLY	Begin	May 24	17:29:57	29.11880	-26.08847	4926
15 <i>*</i>	1 Mooring deployment	Begin	May 25	08:32:38	28.79827	-24.00917	5109 LOCO 14/3
15 <i>*</i>	1 Mooring deployment	ground	May 25	11:02:51	28.80048	-23.99297	5109 LOCO 14/3
16 ⁻	1 CTD	Begin	May 25	20:44:12	28.80395	-23.17502	4908
17 [·]	1 ARGO float	Begin	May 26	04:09:55	28.00182	-23.13405	4951
18 ⁻	1 Mooring recovery	released	May 26	07:19:50	27.61307	-23.12930	4932 LOCO 13/2

Appendix B Cruise summary of stations (activities) of LOCO-IW06 (M. Hiehle)

Station Ca	st Type	Event	date 20	06 time	Latitude	Longitude	Depth m name mooring
19	1 Mooring deployment	ground	May 26	19:31:07	27.61257	-24.49505	5 5146 LOCO 13/3
20	1 Mooring recovery	dredging	May 27	09:01:43	28.80123	-23.11803	4993 LOCO 14/2
20	2 Mooring recovery	dredging	May 27	15:59:12	28.79732	-23.12162	2 4993 LOCO 14/2
21	1 ARGO float	Begin	May 28	14:30:19	25.99903	-24.60223	5091
22	2 CTD	Begin	May 28	19:37:00	25.50337	-24.87583	5152
22	1 Mooring deployment	ground	May 28	20:13:33	25.50320	-24.87613	5152 LOCO 15/3
23	1 ARGO float	Begin	May 29	09:01:18	24.02792	-25.98028	3006
24	1 CTD	Begin	May 29	09:24:12	24.00002	-25.99933	5310
24	2 CTD	Begin	May 29	12:26:00	23.99962	-26.00003	5310
24	3 CTD	Begin	May 29	15:32:26	24.00007	-25.99978	5310
25	1 FLY	Begin	May 29	18:40:05	23.99597	-26.00252	2 5310
26	1 Mooring deployment	ground	May 30	10:30:50	22.51213	-27.28558	5402 LOCO16/3
26	2 CTD	Begin	May 30	10:32:57	22.51190	-27.28590	5402
27	1 Mooring deployment	ground	May 31	09:28:14	20.01810	-28.77352	4810 LOCO 17/3
27	2 CTD	Begin	May 31	10:24:46	19.96798	-28.80742	4768
28	1 Mooring deployment	ground	Jun 01	19:26:28	14.96617	-30.00407	5408 LOCO 18/3
28	2 CTD	Beain	Jun 01	20:34:09	15.01567	-29.97790) 5378
29	1 CTD	Begin	Jun 02	18:27:03	17.50015	-29.73243	4756
30	1 CTD	Beain	Jun 04	08:11:00	22.70917	-29.17975	5585
31	1 CTD	Beain	Jun 05	18:51:25	27.50007	-28.65963	5170
32	1 CTD	Beain	Jun 06	12:14:38	29.64473	-28.41817	310
32	2 FLY	Begin	Jun 06	12:31:56	29.64452	-28.41878	310
33	1 CTD	Beain	Jun 06	12:54:42	29.63960	-28.42220	382
33	2 FLY	Beain	Jun 06	13:14:04	29.63915	-28.42327	4 04
34	1 CTD	Begin	Jun 06	13:41:11	29.62813	-28,43110	1080
34	2 FLY	Begin	Jun 06	14:20:12	29.62837	-28,43045	5 1038
35	1 CTD	Begin	Jun 06	15:04:17	29.61485	-28.44105	5 1744
35	2 FLY	Begin	Jun 06	16:08:31	29.61397	-28.44243	3 1744
36	1 CTD	Begin	Jun 06	17.23.14	29 57415	-28 47147	2718
36	2 FLY	Begin	Jun 06	18:56:41	29 56928	-28 47490	2815
37	1 CTD	Begin	Jun 06	20.14.27	29 52275	-28 51027	3325
37	2 FLY	Failed	Jun 06	22.04.13	29 52153	-28 51095	3335
37	3 FL Y	Regin	Jun 06	23.05.21	29 52083	-28 50945	3351
38		Begin	Jun 07	08.42.53	29 61030	-28 44547	/ 1884
38	2 CTD	Begin	Jun 07	00.12.00	29 61002	-28 44603	1902
38	3 CTD	Begin	Jun 07	11.02.00	29 60998	-28 44615	1896
38	4 CTD	Begin	Jun 07	12.13.35	29 61012	-28 44598	1902
38	5 CTD	Begin	Jun 07	13.22.33	29 61037	-28 44572	2 1890
38	6 CTD	Begin	Jun 07	15.09.59	29 61003	-28 44597	1902
38	7 CTD	Begin	Jun 07	16.26.19	29 60890	-28 44673	1939
38	8 CTD	Begin	Jun 07	17:38:26	29.60698	-28 44715	1987
38		Begin		18.51.18	20.00000	-20.44710	0 1051
28	10 CTD	Begin	Jun 07	20.01.10	29.00040	-20.44032	1908
38	11 CTD	Bogin		20.01.10	20.00900	-20.44070	1000
28	12 CTD	Bogin		21.11.00	29.00902	-20.44000	102
30	1201D	Bogin		22.20.00	29.00937	-20.44047	1920
38 20	14 CTD	Bogin		20.01.01	29.00091	-20.44000	2 1032 1032
20	15 CTD	Bogin		00.40.21	29.00932	-20.44000	1000
20	16010	Bogin		02.00.40	29.00903	-20.44070	1920
30		Degili	JUIIUO	03.10.49	29.01010	-20.44020	1902

Station Cast Type		Event	vent date 2006 time		Latitude	Longitude	Depth m name mooring	
38	17 CTD	Begin	Jun 08	04:22:29	29.60983	-28.44663	1920	
38	18 CTD	Begin	Jun 08	05:32:59	29.60890	-28.44613	1926	
38	19 CTD	Begin	Jun 08	06:44:53	29.61055	-28.44560	1878	
38	20 CTD YoYo last	Begin	Jun 08	07:58:08	29.61008	-28.44597	1902	
39	1 Mooring recovery	released	Jun 08	09:50:51	29.68420	-28.36503	500 DOC 06/2	
40	1 Lander recovery	released	Jun 08	12:43:58	30.00348	-28.31367	500 DOC 06/1	
41	1 Mooring recovery	released	Jun 08	17:03:20	29.99812	-27.80638	4560 LOCO 11/2	
41	2 CTD_Thermistor	Begin	Jun 08	19:09:15	29.97320	-27.81213	4481	
42	1 CTD	Begin	Jun 09	13:11:27	31.50007	-25.12692	5097	
43	1 CTD	Begin	Jun 10	07:37:21	32.99967	-22.40088	5274	
43	2 Mooring deployment	ground	Jun 10	13:09:49	32.97248	-22.42592	5268 LOCO 11/3	