
















power law in N for open ocean, near-surface spectra in the
range f<<σ<<N (Munk 1980), but rather close to shallow sea,
quasi two-layer spectral observations (van Haren 2008). From
the present data, it is estimated that the transition between the
two regimes is found for (at least) N� 6 cpd, the largest large-
scale buoyancy frequency for the present observations.

The present KE-spectra compare to within a factor of 2
with those from other deep Western-Mediterranean observa-
tions (van Haren and Millot 2004). As was indicated by van
Haren and Millot (2004), their KE-spectra between 100 and
2,700 m followed a reasonable N-scaling for levels where N�
2.5f, with the exception of data from levels where N � 0. They
verified (but did not publish) that the (N� 2.5f)-spectra col-
lapse to the canonical “GM” (Garrett andMunk 1972) internal
wave variance to within a factor of 2, provided the GM-
vertical-scale b was used from the range of weakest stratifica-
tion instead of from around 1,000 m. For levels where N� 0,
the GM-model principally would not work, but van Haren and
Millot (2004) suggested a collapse to within a factor of 2 after
using an artificial scaling factor of N=3f.

Our observations thus confirm that the deepMediterranean is
a more active internal wave and internal wave-induced turbulent
sea rather than being quiescent, as has been recently demonstrat-
ed for the central Western Mediterranean mainly using CTD
observations (van Haren and Millot 2009) and for the Eastern
Mediterranean using high-resolution temperature sensors (van
Haren and Gostiaux 2011). In all cases, mixing seems to be
governed by inertial wave motions as expected, because they are
the only waves that can freely propagate in both stratified and
near-homogeneous waters. They are associated with previously

observed mesoscale eddy variability which can be vigorous in
the deep Mediterranean when enforced by dense-water forma-
tion (Gascard 1973; Taupier-Letage and Millot 1986; Testor and
Gascard 2006). The varying dynamics in the Mediterranean
suggest that the above observations are expected to exist in
various other sites outside the Ligurian Sea.
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Appendix

Short review of internal wave signatures in shipborne CTD
data and moored vertical current observations

Fig. 10 Three 2-h periods of vertical currents, with respect to their local
timemean, from Fig. 8c (a–c) and Fig. 8d (aa–cc: here, vertical average is
over full range of 60 m in a–c); the shortest period TNm=1,110 s. Bars to

the right indicate approximate amplitude scales of vertically coherent
motions and of noise
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Shipborne conductivity-temperature-depth CTD-profile
observations are a practical means to establish the possible
existence of internal waves without observing their propaga-
tion directly. CTD data are used to compute the density
stratification of natural stability, which provides the upper
limit of the internal wave frequency band. The buoyancy
frequencyN=N100, computed over a typical but arbitrary large
(vertical) scale of Δz=100 m using a first-order difference
scheme, is a measure for the overall, smoothed “background”
stratification. In more detail, single profile stratification is in
thin strongly stratified layers with larger, more-homogeneous
layers in-between. Such layering is created by, e.g., turbulent
mixing and straining of the larger-scale (low-frequency) inter-
nal waves. Thus, when the vertical density stratification is
computed over smaller vertical scales, say Δz=1 m, a wider
variety of buoyancy frequencies, although at larger accuracy,
is observed from a minimum smaller than N100 and up to a
maximum N1=Nm (Fig. 1b). Thereby, the error of computa-
tion increases of course, which is verified to be about 0.8f for
100 m range (van Haren and Millot 2006) and thus about 8f
for 1 m range.

The small-scale buoyancy frequencies >N100 could support
small-scale internal waves that propagate along thin inter-
faces. The large-scale N are thought to support internal wave
groups with frequencies σ<N100 in a more three-dimensional
fashion. These wave groups can reflect at layers whereN100(z)
becomes smaller than their frequencies (Munk 1980). The
enhanced energy due to reflection is thought to create a hump
in potential energy (or vertical current) spectra, as modelled
using Airy functions byMunk (1980) and which is commonly
found to peak at σ=0.5N (Cairns and Williams 1976). In the
upper 200 m of the Mediterranean N100=10–100f and the
internal wave frequency band is one to two decades wide.

Low-frequency internal waves near f are best studied by
exploring kinetic energy spectra, ΦKE, from moored
horizontal-current observations. High-frequency internal
waves near N are best studied by exploring potential energy
spectra ΦPE=N

2Φη from density-layer displacement spectra
Φη, e.g., inferred from temperature observations (Munk
1980). Alternatively for the latter, one can use vertical current
observations, given the relationship w=dη/dt (e.g., Fofonoff
1969), so that w-spectra Φw=(σ

2/N2)ΦPE. Classically, for
open-ocean near-surface internal waves in the frequency range
f<<σ<<N, the spectrum Φw(σ, z) ~ N(z)−1 is a constant with
frequency and decreases its variance when (large-scale) N
increases (Munk 1980). This relationship obviously fails in
homogeneous waters. Direct vertical current observations are
rather rare, because in general the oceanic aspect ratio of
vertical over horizontal currents is low, being O(0.001–
0.01). It is noted that this aspect ratio becomes larger for
internal waves, being O(0.01–0.1) for low-frequency internal
waves in moderate-strong stratification. It approaches 1 for
internal waves near the buoyancy frequency in general and for

near-inertial waves in near-homogeneous waters (van Haren
and Millot 2005), just like in turbulent motions.
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